A |\ \ | \ \ | \ \ | \ \ | \ \ | \ \ C B H Не очень ровный рисунок, но позволяет увидеть, где какие буквы стоят. АН-биссектриса, следовательно делит угол А пополам, тогда угол САН= углу ВАН = 30°. угол АВС = 180°-90°-60°=30° Рассмотрим треугольник АВН. Так как в нем угол А= углу В ( = 30°), то он является равносторонним, следовательно АН=НВ=12 см Нам нужно найти катет СН, так как против большего угла лежит больший катет. Тот же треугольник АВН. Находим угол Н, он равен 180°-30°-30°=120°. Рассмотрим углы АНС и АНВ, они смежные, следовательно угол АНС=180°-120°=60° ( это угол Н в треугольнике АНС) Рассмотрим треугольник АНС. Угол А в нем равен 30°, а гипотенуза = 12 см, тогда, так как против угла =30° лежит катет, равный половине гипотенузы находим катет СН, он равен 12:2=6 см Треугольник АВС: Катет СВ = СН + НВ = 6 см + 12 см = 18 см ответ: 18 см
|\ \
| \ \
| \ \
| \ \
| \ \
| \ \
C B
H
Не очень ровный рисунок, но позволяет увидеть, где какие буквы стоят.
АН-биссектриса, следовательно делит угол А пополам, тогда
угол САН= углу ВАН = 30°. угол АВС = 180°-90°-60°=30°
Рассмотрим треугольник АВН.
Так как в нем угол А= углу В ( = 30°), то он является равносторонним, следовательно АН=НВ=12 см
Нам нужно найти катет СН, так как против большего угла лежит больший катет.
Тот же треугольник АВН. Находим угол Н, он равен 180°-30°-30°=120°.
Рассмотрим углы АНС и АНВ, они смежные, следовательно угол АНС=180°-120°=60° ( это угол Н в треугольнике АНС)
Рассмотрим треугольник АНС.
Угол А в нем равен 30°, а гипотенуза = 12 см, тогда, так как против угла =30° лежит катет, равный половине гипотенузы находим катет СН, он равен 12:2=6 см
Треугольник АВС:
Катет СВ = СН + НВ = 6 см + 12 см = 18 см
ответ: 18 см
2√3 ед.
Объяснение:
Во условию в ΔABC AB=5 ед., AC=7 ед. , BC =10 ед.
Медиана АО - медиана, проведенная к большей стороне BC.
Достроим ΔABC до параллелограмма ABDC.
Диагонали параллелограмма пересекаясь, точкой пересечения делятся пополам , тогда AD= 2* AO.
По свойству квадратов диагоналей параллелограмма : сумма квадратов диагоналей параллелограмма равна сумме квадратов сторон.
AD² +BC² = 2*( AB²+AC²);
(2AO) ²+BC² = 2*( AB²+AC²);
4AO² +BC² = 2*( AB²+AC²);
4AO² + 10²=2*( 5²+7²);
4AO² = 2*( 25+49)-100;
4AO² =48;
AO² =48:4;
AO² =12;
AO= √12=√(4*3)=2√3 ед.