, Задайте формулой линейную функцию, если ее график: 1)Проходит через точки A(-1,-2) и B(3,1) 2)Проходит через точку A(-1,-2) параллельно графику уравнения 3x+2y=7 3)Проходит через точку А(-1,-2) параллельно биссектрисе второй координатной четверти
Чтобы ответить на вопрос задачи, нужно найти длину основания сечения и его высоту. По условию сечение -квадрат, значит, достаточно найти длину одной стороны - хорды ВС, лежащей в плоскости основания цилиндра. Она удалена от оси на 8 см. Т.к. расстояние от точки (О) до прямой ( хорда ВС) измеряется перпендикуляром, проведем ОН. Перпендикуляр к хорде из центра окружности делит ее пополам. ВН=НС Треугольник ВОН - прямоугольный с гипотенузой=r=10, и катетом ОН=8. Этот треугольник "египетский, второй катет ВС равен 6 ( можно проверить по т.Пифагора) Тогда ВС=2*6=12 см АВ=ВС=12 см ⇒ Ѕ АВСД=12²=144 см²
Меншою діагоналлю паралелепіпеда буде та, яка проектується на меншу діагональ основи, тобто та, що лежить проти кута 45°. Отже менша діагональ основи ВD, а менша діагональ паралелепіпеда В1D = 7 см.
По условию сечение -квадрат, значит, достаточно найти длину одной стороны - хорды ВС, лежащей в плоскости основания цилиндра.
Она удалена от оси на 8 см.
Т.к. расстояние от точки (О) до прямой ( хорда ВС) измеряется перпендикуляром, проведем ОН.
Перпендикуляр к хорде из центра окружности делит ее пополам.
ВН=НС
Треугольник ВОН - прямоугольный с гипотенузой=r=10, и катетом ОН=8.
Этот треугольник "египетский, второй катет ВС равен 6 ( можно проверить по т.Пифагора)
Тогда ВС=2*6=12 см
АВ=ВС=12 см ⇒
Ѕ АВСД=12²=144 см²
Так як паралелепіпед прямий, то ∆ ВDВ1 прямокутний з гіпотенузою В1D. За теоремою Піфагора знайдемо висоту В1В паралелепіпеда: В1В2 = В1D2 – BD2 = 72 – 13 = 49 – 13 = 36. В1В = 6 см. SABCD = AB ∙ AD ∙ sin ∠BAD = 2√2 ∙ 5 ∙ √2 2 = 10 (см2).
Знаходимо об’єм паралелепіпеда: V = SABCD ∙ BB1 = 10 ∙ 6 = 60 (см3).
Нехай АВ = 2√2 см, АD = 5 см, ∠BAD = 45°.
Меншою діагоналлю паралелепіпеда буде та, яка проектується на меншу діагональ основи, тобто та, що лежить проти кута 45°. Отже менша діагональ основи ВD, а менша діагональ паралелепіпеда В1D = 7 см.
За теоремою косинусів:
ВD. BD2 = AB2 + AD2 – 2 ∙ AB ∙ AD ∙ cos∠BAD = = (2√2)2 + 52 – 2 ∙ 2√2 ∙ 5 ∙ cos45° = = 8 + 25 - 20√2 ∙ √2 2 = 33 – 20 = 13.