Вариант решения Треугольники ВВ₁С и СС₁В - прямоугольные, т.к. высоты пересекаются с соответствующими сторонами под прямым углом. Вокруг этих треугольников можно описать одну окружность, т.к. гипотенуза ВС у них - общая, и радиус этой окружности будет одним и тем же для описанной вокруг каждого треугольника окружности. Т.е. точки С и В₁ будут лежать на одной и той же окружности. Углы ВВ₁С₁ И ВСС₁ - вписанные и опираются на одну и ту же дугу, стягиваемую хордой С₁В. Вписанные углы, опирающиеся на одну дугу - равны, ч.т.д.
Треугольники ВВ₁С и СС₁В - прямоугольные, т.к. высоты пересекаются с соответствующими сторонами под прямым углом.
Вокруг этих треугольников можно описать одну окружность, т.к. гипотенуза ВС у них - общая, и радиус этой окружности будет одним и тем же для описанной вокруг каждого треугольника окружности.
Т.е. точки С и В₁ будут лежать на одной и той же окружности.
Углы ВВ₁С₁ И ВСС₁ - вписанные и опираются на одну и ту же дугу, стягиваемую хордой С₁В.
Вписанные углы, опирающиеся на одну дугу - равны, ч.т.д.
ВС=АС*tgA=АС*4/3=4АС/3, СР=АС*sinA=АС*4/5=4АС/5, АВ=АС/cosA=АС/(3/5)=5АС/3, ВР=ВС в квадрате/АВ=(16*АС в квадрате/9)/(5АС/3)=16АС/15, радиус вписанной окружности в ВСР=(СР+ВР-ВС)/2, 60=(СР+ВР-ВС)/2, 120=(4АС/5)+(16АС/15)-(4АС/3), 120=8АС/15, АС=225, ВС=4*225/3=300, АВ=5*225/3=375, радиус вписанной в АВС=(ВС+АС-АВ)/2=(300+225-375)/2=75