Пусть эта самая точка - D и пусть угол ABC все таки не тупой, тогда он не больше 90 градусов.
По условию AD = BD = DC, тогда треугольники BDC и ADB - равнобедренные, тогда угол DBC равен углу DCB, аналогично угол DBA равен углу DAB. Пусть угол DBC равен углу DCB равен x, а угол DBA равен углу DAB равен y. Тогда угол ABC по предположению не тупой, тогда x + y не больше 90. Заметим, что угол BAC меньше, чем BAD, тогда угол BAC < y, аналогично угол BCA меньше, чем угол BCD, значит угол BCA < x, но тогда сумма углов BAC и BCA меньше, чем x + y, а значит меньше 90 градусов. Но тогда в треугольнике ABC угол сумма углов меньше, чем 2x + 2y, но тогда она меньше 180, хотя должна быть равна 180. Противоречие, значит исходное предположение неверно и угол ABC - тупой. ч.т.д.
P.s. Небольшое пояснения почему угол BAC меньше, чем BAD и почему угол BCA меньше, чем угол BCD. Это так, потому что наша точка D по условию лежит вне треугольника, а значит отрезки AD и CD проходят за границами.
Объяснение:
Пусть эта самая точка - D и пусть угол ABC все таки не тупой, тогда он не больше 90 градусов.
По условию AD = BD = DC, тогда треугольники BDC и ADB - равнобедренные, тогда угол DBC равен углу DCB, аналогично угол DBA равен углу DAB. Пусть угол DBC равен углу DCB равен x, а угол DBA равен углу DAB равен y. Тогда угол ABC по предположению не тупой, тогда x + y не больше 90. Заметим, что угол BAC меньше, чем BAD, тогда угол BAC < y, аналогично угол BCA меньше, чем угол BCD, значит угол BCA < x, но тогда сумма углов BAC и BCA меньше, чем x + y, а значит меньше 90 градусов. Но тогда в треугольнике ABC угол сумма углов меньше, чем 2x + 2y, но тогда она меньше 180, хотя должна быть равна 180. Противоречие, значит исходное предположение неверно и угол ABC - тупой. ч.т.д.
P.s. Небольшое пояснения почему угол BAC меньше, чем BAD и почему угол BCA меньше, чем угол BCD. Это так, потому что наша точка D по условию лежит вне треугольника, а значит отрезки AD и CD проходят за границами.
Решаем систему
2x - y - 4 = 0
x + 3y + 5 = 0
получаем х = 1, у = - 2
это координаты точки пересечения прямых, и эта точка будет принадлежать искомой прямой.
Теперь запишем параллельную прямую так:
y = (- 2x - 6)/3= - 2x/3 - 2
Коэффициент при х, который = - 2/3, указывает на угол наклона прямой к оси х, и будет такой же у искомой прямой, т.к. они параллельны.
Теперь запишем уравнение искомой прямой
y = - 2x/3 + b
чтобы найти b подставим в уравнение координаты точки (1 ; - 2)
- 2 = - 2*1/3 + b
b = - 4/3
Подставим значение b и получим формулу
y = - 2x/3 - 4/3
Дополнение: решение первой системы уравнений2x - y - 4 = 0
x + 3y + 5 = 0
2x - y - 4 = 0
- 2x - 6y - 10 = 0 складываем уравнения:
- 7y = 14
у = - 2 подставляем во второе уравнение
x + 3(- 2) + 5 = 0
х = 1