Если это треугольник, то тут и решать нечего, поскольку центр обеих окружностей совпадает с точкой пересечения медиан, а сама медиана как раз и делится этим самым центром на 2 отрезка, один из которых радиус описанной, а другой - вписаной окружности. Поэтому медиана (высота, биссектриса) равна сумме радиусов, то есть сумме длин окружностей, деленной на 2 пи.
(7*корень(3)*пи)/(2*пи) = 7*корень(3)/2;
сторона поэтому равна 7 (поделил на синус 60 градусов), а периметр 21.
Если же многоугольник произвольный, то тут решение зависит от числа сторон. Уточните.
Объем равен удвоенному объему правильной четырехугольной пирамиды . Основанием пирамиды является квадрат со стороной a, а высота пирамиды равна длине отрезка AO.
Если это треугольник, то тут и решать нечего, поскольку центр обеих окружностей совпадает с точкой пересечения медиан, а сама медиана как раз и делится этим самым центром на 2 отрезка, один из которых радиус описанной, а другой - вписаной окружности. Поэтому медиана (высота, биссектриса) равна сумме радиусов, то есть сумме длин окружностей, деленной на 2 пи.
(7*корень(3)*пи)/(2*пи) = 7*корень(3)/2;
сторона поэтому равна 7 (поделил на синус 60 градусов), а периметр 21.
Если же многоугольник произвольный, то тут решение зависит от числа сторон. Уточните.
У октаэдра 8 граней - равносторонних треугольников.
Площадь полной поверхности правильного октаэдра с длиной ребра a равна S = 8*(a²√3/4) = 2√3a².
Приравняем заданному значению: 18√3 = 2√3a², a² = 9, а = 3.
Нашли длину ребра: а = 3.
Объем равен удвоенному объему правильной четырехугольной пирамиды . Основанием пирамиды является квадрат со стороной a, а высота пирамиды равна длине отрезка AO.
АО = √(a² - (a√2/2)²) = √(a² - (2a²/4)) = a/√2.
Объём V = 2*((1/3)*a²*(a/√2)) = a³√2/3.
Подставим а = 3.
Тогда V = 3³√2/3 = 9√2.