Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
рассматриваем в плоскости- около треугольника АВС описана окружность с центом О1, О-центр шара, ОО1 перпендикулярна плоскости АВС=4, треугольник АВС прямоугольный, АС=2, ВС=4*корень2, АВ=6, если сумма квадратов двух сторон=квадрату большей стороны треугольник прямоугольный, АС в квадрате+ВС в квадрате=4+32=36, АВ в квадрате=6*6=36, центр описанной окружности середина гипотенузы АВ, АО1=ВО1=6/2=радиус окружности, треугольник АОО1 прямоугольный, АО (радиус сферы)=(АО1 в квадрате+ОО1 в квадрате)=корень(9+16)=5
Точка B(3,-2,2)
а) параллельна плоскости Oyz.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Подробнее - на -