Заполните пропуски в тексте, чтобы получилось правильное решение. Задача. На биссектрисе угла ABC выбраны точки M и N. Точки P и Q — проекции M и N на лучи BA и BC соответственно. Точка X — середина отрезка MN. Докажите, что PX=QX.
Решение. Пусть точка P′ симметрична точке P относительно прямой MN.
Из симметрии
∠MP′B=
∠BPX
∠BPN
90∘
,
поэтому четырёхугольник MP′QN является
Выбрать
. Опустим из точки X перпендикуляр на прямую BA, обозначим его основание через Y. Отрезок XY является средней линией трапеции MP′QN, поскольку точка X является серединой отрезка MN и
Выбрать
. Следовательно, точка Y является серединой отрезка P′Q и точка X лежит на серединном перпендикуляре к P′Q. Все точки на серединном перпендикуляре равноудалены от концов отрезка, поэтому XP′=XQ. Осталось ещё раз воспользоваться симметрией и заметить, что
MP=MP′
NP=NP′
XP=XP′
.
Это сириус
а) знахдимо площу трикутника: корінь (21*(21-13)(21-14)(21-15)), де 21 -- це півпериметр
площа дорівнює 84 см квадратних.
б) знаходимо висоту ОД піраміди. Оскільки двогранні кути при кожному ребрі основи піраміди рівні між собою, то точка Д, що лежить на основі піраміди, співпадає з центром вписаного кола трикутника-основи. Радіус цього кола дорівнює відношенню площі трикутника до його півпериметра, і дорівнює 4см.
Якщо на малюнку піриміди вказати цей радіус вписаного кола відрізком ДК, а точку К з'єднати з вершиною піраміди, то отримаємо прямокутний трикутник ДКО, де ДО висота піраміди, ДК дорівнює 4см, а кут ДКО дорівнює 45град за умовою задачі. Звідси зханодимо висоту. Т. я. прямокутний трикутник ДОК при основі ОК має один з кутів, що дорівнює 45 град, то за теоремою суми кутів трикутника, визначаємо, що інший кут при основі ОК також дорівнює 45град. Значить трикутник ДОК є прямокутним рівнобедренним трикутником, а значить катети ДО та ДК рівні між собою, і дорівнюють 4см
Тоді об'єм піраміди дорівнює 112см кубічних
2) ця задача розв'язується МАЙЖЕ так само.
Дано: ABCD - ромб, BD = 24см, AC = 10см;
Знайти: <A, <B, <C, <D;
Рішення.
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
sin = 5/13, sin ABO≈0.38 <ABO≈68 °, <BAO = 180 ° - <BOA- <ABO, <BAO = 180 ° -90 ° -68 ° = 22 °,
3) <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °
Відповідь: <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °.