В стереометрии изучаются пространственные фигуры, однако на чертеже они изображаются в виде плоских фигур. Каким же образом следует изображать пространственную фигуру на плоскости? Обычно в геометрии для этого используется параллельное проектирование.
Пусть p - некоторая плоскость, l - пересекающая ее прямая (рис. 1). Через произвольную точку A, не принадлежащую прямой l, проведем прямую, параллельную прямой l. Точка пересечения этой прямой с плоскостью p называется параллельной проекцией точки A на плоскость p в направлении прямой l. Обозначим ее A'. Если точка A принадлежит прямой l, то параллельной проекцией A на плоскость p считается точка пересечения прямой l с плоскостью p.
Таким образом, каждой точке A пространства сопоставляется ее проекция A' на плоскость p. Это соответствие называется параллельным проектированием на плоскость p в направлении прямой l.
Пусть Ф - некоторая фигура в пространстве. Проекции ее точек на плоскость p образуют фигуру Ф', которая называется параллельной проекцией фигуры Ф на плоскость p в направлении прямой l. Говорят также, что фигура Ф' получена из фигуры Ф параллельным проектированием.
Примеры параллельных проекций дают, например, тени предметов под воздействием пучка параллельных солнечных лучей.
Рассмотрим свойства параллельного проектирования.
Свойство 1. Если прямая параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой является точка. Если прямая не параллельна и не совпадает с прямой l, то ее проекцией является прямая.
Доказательство. Ясно, что если прямая k параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой на плоскость p будет точка пересечения прямой l и плоскости p. Пусть k не параллельна и не совпадает с прямой l (рис. 2). Возьмем какую-нибудь точку A на прямой k и проведем через нее прямую a, параллельную l. Ее пересечение с плоскостью проектирования p даст точку A', являющуюся проекцией точки A. Через прямые a и k проведем плоскость a . Ее пересечением с плоскостью p будет искомая прямая k', являющаяся проекцией прямой k.
ПАРАЛЛЕЛЬНОЕ ПРОЕКТИРОВАНИЕ
В стереометрии изучаются пространственные фигуры, однако на чертеже они изображаются в виде плоских фигур. Каким же образом следует изображать пространственную фигуру на плоскости? Обычно в геометрии для этого используется параллельное проектирование.
Пусть p - некоторая плоскость, l - пересекающая ее прямая (рис. 1). Через произвольную точку A, не принадлежащую прямой l, проведем прямую, параллельную прямой l. Точка пересечения этой прямой с плоскостью p называется параллельной проекцией точки A на плоскость p в направлении прямой l. Обозначим ее A'. Если точка A принадлежит прямой l, то параллельной проекцией A на плоскость p считается точка пересечения прямой l с плоскостью p.
Таким образом, каждой точке A пространства сопоставляется ее проекция A' на плоскость p. Это соответствие называется параллельным проектированием на плоскость p в направлении прямой l.
Пусть Ф - некоторая фигура в пространстве. Проекции ее точек на плоскость p образуют фигуру Ф', которая называется параллельной проекцией фигуры Ф на плоскость p в направлении прямой l. Говорят также, что фигура Ф' получена из фигуры Ф параллельным проектированием.
Примеры параллельных проекций дают, например, тени предметов под воздействием пучка параллельных солнечных лучей.
Рассмотрим свойства параллельного проектирования.
Свойство 1. Если прямая параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой является точка. Если прямая не параллельна и не совпадает с прямой l, то ее проекцией является прямая.
Доказательство. Ясно, что если прямая k параллельна или совпадает с прямой l, то ее проекцией в направлении этой прямой на плоскость p будет точка пересечения прямой l и плоскости p. Пусть k не параллельна и не совпадает с прямой l (рис. 2). Возьмем какую-нибудь точку A на прямой k и проведем через нее прямую a, параллельную l. Ее пересечение с плоскостью проектирования p даст точку A', являющуюся проекцией точки A. Через прямые a и k проведем плоскость a . Ее пересечением с плоскостью p будет искомая прямая k', являющаяся проекцией прямой k.
26 : 2 = 13 см - полупериметр его
(13 - х) см - вторая сторона параллелограмма
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон:
Уравнение
7² + 11² = 2х² + 2 * (13 - х)²
49 + 121 = 2x² + 2 * (х² - 26х + 169 )
170 = 2 x² + 2x² - 52х + 338
4х² - 52х + 168 = 0
x² - 13x + 42 = 0
D = 13² - 4 * 1 * 42 = 169 - 168 = 1
√D = √1 = 1
x₁ = (13 + 1)/2 = 14/2=7см - одна сторона
x₂ = (13 - 1) /2 = 12/2 = 6см - одна сторона
13 - 7 = 6 см - другая сторона
13 - 6 = 7 см - другая сторона
Длины сторон взаимозаменяемы 6см и 7 см или 7см и 6см
ответ: 6см ;7 см; 6см; 7см