Ну, в треуг. к бОльшей стороне проводится мЕньшая высота. Док-во очень простое, логическое. Площадь треуг.- величина постоянная? Да. Тогда если брать произведение бОльшей стороны на какую-то высоту (1) и мЕньшую сторону на какую-то высоту (2), то понятно, что (1) должна быть меньше (2) Соответственно 10 - 9 15 - 6 18 - 5 Проверяя по площади, находим, что это так.
Но вот только неувязочка с задачей- высоты -то фейковые! Из решения получаем, что площадь треуг. будет, например , 10*9/2=45
А из сторон 15,18 и 10 по формуле Герона находим истинную площадь - приблизительно 75. Тем, кто составлял условие задачи - руки повыдергивать. Так учителю и скажи.
Объяснение:
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.
Док-во очень простое, логическое.
Площадь треуг.- величина постоянная? Да. Тогда если брать произведение бОльшей стороны на какую-то высоту (1) и мЕньшую сторону на какую-то высоту (2), то понятно, что (1) должна быть меньше (2)
Соответственно
10 - 9
15 - 6
18 - 5
Проверяя по площади, находим, что это так.
Но вот только неувязочка с задачей- высоты -то фейковые!
Из решения получаем, что площадь треуг. будет, например , 10*9/2=45
А из сторон 15,18 и 10 по формуле Герона находим истинную площадь - приблизительно 75.
Тем, кто составлял условие задачи - руки повыдергивать. Так учителю и скажи.