Заранее задача 1
в равнобедренном треугольнике АBC с основанием AC проведены высоты AH и CN , которые пересекаются в точке O . Найдите уголCBO, если угол HON=140° . ответ дайте в градусах.
Задача 2
В треугольнике MNK проведены высоты KA, NC и
MB , еслиCK=15см,OC=8см,AN=5см.( подобие треугольников)
задача 3
Высоты AM, BH, CE треугольника ABC пересекаются в точке О ,так что OM=OH=OE, угол ABH =30° . Найдите угол EOM.
Задача 4
В треугольнике AB. проведены высоты AH, BN, CP, которые пересекаются в точке Q. Известно , что QH= 10см,ON=9см,AN=18см.
Найдите BH
x = (x₁ + x₂)/2 y = (y₁ + y₂)/2.
1) A ( - 3 ; 4), B ( 2 ; - 2)
x = (- 3 + 2)/2 = - 1/2 = - 0,5
y = (4 - 2)/2 = 1
C(- 0,5 ; 1)
2) A ( - 1 ; - 7), B ( - 4 ; 3)
x = (- 1 - 4)/2 = - 5/2 = - 2,5
y = (- 7 + 3)/2 = - 4/2 = - 2
C (- 2,5 ; - 2 )
3) A ( 2,8 ; - 6), B ( - 3 ; 1,6)
x = (2,8 - 3)/2 = - 0,2/2 = - 0,1
y = (- 6 + 1,6)/2 = - 4,4/2 = - 2,2
C(- 0,1 ; - 2,2)
4) A ( ; 0), B ( ; 5).
x = ( + )/2 = 4/2 = 2
y = (0 + 5)/2 = 2,5
C(2 ; 2,5)
(ABCD) | | OO₁ ; ∠AOB =120° ; OO₁ =10 см ; OH ⊥AB ; OH =2 см .
-------
S_(ABCD) -?
ABCD - прямоугольник
S_(ABCD) =AB*AD = AB* OO₁=10AB . Определим хорду AB .
∆OAB равнобедренный (OA = OB =r) , высота OH одновременно и медиана AH =BH =AB /2 и биссектриса * * * ∠AOH =(1/2)∠AOB =60°.* * *
∠ BAO= ∠ABO = (180° - ∠AOB ) /2 =90°- (1/2)∠AOB =90° -60° = 30° .
OH =OA/2 (катет против угла 30°) ⇒ OA =2*OH =2*2 см = 4 см и
AB = 2* AH = 2* √ (OA² -OH²) =2√ (4² -2²) =4√3 (см) .
* * * можно было сразу AB =2* AH = 2*OH*tq60° * * *
S_(ABCD) =10*4√3 = 40√3 (см ²) .
ответ : 40√3 см ² .