В треугольнике ABC угол С равен 90,СН- высота,ВС=14, sin A= 4/7. Найдите AH.
Длина катета ВС равна призведению гипотенузы АВ на sinA . Следовательно гипотенуза будет равна ВС / sinA АВ = ВС / sinA = 14/(4/7)=14*7/4=24,5 Найдём по теореме Пифагора сторону АС АВ²=АС²+ВС² АС²=АВ²-ВС² АС=√(24,5²-14²)=20,11 Рассмотрим треугольник АНС . Поскольку СН высота опущенная на гипотенузу то угол АНС прямой . Таким образом СН=АСsinA СН= 20,11*(4/7)=11,49 Из теоремы Пифагора следует АС²=АН²+СН² АН²=АС²-СН² АН=√(20,11²-11,49²) АН=16,5
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
Свои данные подставь и всё будет норм6)
В треугольнике ABC угол С равен 90,СН- высота,ВС=14, sin A= 4/7. Найдите AH.
Длина катета ВС равна призведению гипотенузы АВ на sinA . Следовательно гипотенуза будет равна ВС / sinA
АВ = ВС / sinA = 14/(4/7)=14*7/4=24,5
Найдём по теореме Пифагора сторону АС
АВ²=АС²+ВС²
АС²=АВ²-ВС²
АС=√(24,5²-14²)=20,11
Рассмотрим треугольник АНС . Поскольку СН высота опущенная на гипотенузу то угол АНС прямой . Таким образом СН=АСsinA
СН= 20,11*(4/7)=11,49
Из теоремы Пифагора следует
АС²=АН²+СН²
АН²=АС²-СН²
АН=√(20,11²-11,49²)
АН=16,5
Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH.
Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции.
Sтрапеции=27+33/2 * 6 = 180 см^2
ответ:180 см^2