Можно взять угол С тупой, тогда срабатывает теорема косинусов, при условии выполнения неравенства треугольников такой треугольник будет существовать.
ответ Существует.
б) Отношение а к с равно отношению косинуса А к косинусу С. Возьмем, например, угол А и угол С по 45°, а угол В прямой. Тогда при выполнении неравенства треугольников такой треугольник прямоугольный равнобедренный существует.
Опускаем из вершины высоту, в равнобедренном она является биссектриссой, рассмотрим получившиеся треугольники у него угол 60 т.к.120/2 т.к сумма острых углов прямоугольного треугольника 90 то третий угол 30 следовательно высота исходного треугольника это сторона малого против угла 30 равна половине гипотенузы те стороны исходного треугольника и равна 20 см а второй катет против угла 60 малого это половина основания исходного треугольника и равен 40*на синус угла 60 т.е 40*√3/2 . площадь S=a*h/2 и получим S=20*40*√3/2=400 √3 cm²
а) Возьмем угол С прямой. Получим теорему Пифагора, косинус прямого угла равен нулю. а=3, в=4, с=5.
Можно взять угол С тупой, тогда срабатывает теорема косинусов, при условии выполнения неравенства треугольников такой треугольник будет существовать.
ответ Существует.
б) Отношение а к с равно отношению косинуса А к косинусу С. Возьмем, например, угол А и угол С по 45°, а угол В прямой. Тогда при выполнении неравенства треугольников такой треугольник прямоугольный равнобедренный существует.
в) Если угол В прямой, а угол А равен 30°,
сторона с =а√3, в=2а
ответ Существует
площадь S=a*h/2 и получим S=20*40*√3/2=400 √3 cm²