2. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 25 см*8 см = 200 см^2.
ответ: 200 см^2.
3. Площадь трапеции равна произведению его высоты на полусумму оснований (по совместительству, длина средней линии равна полусумме оснований трапеции). 8 см*15 см = 120 см^2.
5. Вторая сторона прямоугольника равна 3 см (так как прямоугольный треугольник со сторонами 5 (см) и 4 (см) - египетский). 3 см*4 см = 12 см^2.
ответ: 12 см^2.
6. Если опустим на основание высоту (которая также является биссектрисой и медианой), она поделит основание на отрезки по 8 см каждые. Высота равна 6 см (опять же, заглянем в прямоугольный треугольник со сторонами 8 (см) и 10 (см) - египетский, поэтому, второй катет равен 6 см). Площадь каждого треугольника = 6 см*8 см/2 = 24 см^2, площадь всего равнобедренного треугольника = 24 см^2*2 = 48 cм^2.
ответ: 48 см^2.
7. Площадь прямоугольника равна произведению его смежных сторон. 4 см*8 см = 32 см^2.
ответ: 32 см^2.
8. Площадь прямоугольного треугольника равна половине произведения его катетов. 5 см*10 см/2 = 25 см^2.
ответ: 25 см^2.
9. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 6 см*8 см = 48 см^2.
ответ: 48 см^2.
10. Площадь трапеции равна произведению его высоты на полусумму оснований. Полусумма оснований - 16 см/2 = 8 см. 48 см^2 = 8 cм*h (высота) ⇒ h = 6 cм.
А1. ответ: 4.
А2. ответ: 4.
А3. ответ: 3.
А4. ответ: 1.
В1. Дано: ΔАВС, АВ = ВС = АС + 5 см, Р = 34 см.
Найти: АВ.
Решение: Пусть АС = х см, тогда АВ = ВС = х + 5,
x + (x + 5) + (x + 5) = 34
3x + 10 = 34
3x = 24
x = 8
АС = 8 см
АВ = ВС = 8 + 5 = 13 см
ответ: боковая сторона 13 см.
В2. Дано: ΔАВС, АВ = АС, АМ - медиана, Pabc = 40 см, Pabm = 33 см.
Найти: АМ.
Pabm = 33 см
АВ + ВМ + АМ = 33
2 · (АВ + ВМ + АМ) = 66
Так как АВ = АС, а ВМ = СМ, то
2АВ + 2ВМ + 2АМ = 66
АВ + АС + ВС + 2АМ = 66
2АМ = 66 - (АВ + АС + ВС) = 66 - Pabc = 66 - 40 = 16
AM = 16/2= 8 см
С1. 1) Если сумма равных сторон равна 26 см, то боковые стороны равны по 13 см, а основание - 10 см.
2) Обозначим боковые стороны а и b, основание - с.
а + с = 26 см
Рabc = 2а + с = 36 см
с = 36 - 2а
с = 26 - а
26 - a = 36 - 2a
a = 10 см
c = 16 см
ответ: 13 см, 13 см, 10 см или 10 см, 10 см, 16 см.
1. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(22-2) = 180°*20 = 3600°.
ответ: 3600°.
2. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 25 см*8 см = 200 см^2.
ответ: 200 см^2.
3. Площадь трапеции равна произведению его высоты на полусумму оснований (по совместительству, длина средней линии равна полусумме оснований трапеции). 8 см*15 см = 120 см^2.
ответ: 120 см^2.
4. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(5-2) = 180°*3 = 540°.
ответ: 540°.
5. Вторая сторона прямоугольника равна 3 см (так как прямоугольный треугольник со сторонами 5 (см) и 4 (см) - египетский). 3 см*4 см = 12 см^2.
ответ: 12 см^2.
6. Если опустим на основание высоту (которая также является биссектрисой и медианой), она поделит основание на отрезки по 8 см каждые. Высота равна 6 см (опять же, заглянем в прямоугольный треугольник со сторонами 8 (см) и 10 (см) - египетский, поэтому, второй катет равен 6 см). Площадь каждого треугольника = 6 см*8 см/2 = 24 см^2, площадь всего равнобедренного треугольника = 24 см^2*2 = 48 cм^2.
ответ: 48 см^2.
7. Площадь прямоугольника равна произведению его смежных сторон. 4 см*8 см = 32 см^2.
ответ: 32 см^2.
8. Площадь прямоугольного треугольника равна половине произведения его катетов. 5 см*10 см/2 = 25 см^2.
ответ: 25 см^2.
9. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 6 см*8 см = 48 см^2.
ответ: 48 см^2.
10. Площадь трапеции равна произведению его высоты на полусумму оснований. Полусумма оснований - 16 см/2 = 8 см. 48 см^2 = 8 cм*h (высота) ⇒ h = 6 cм.
ответ: 6 см.