A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
Объяснение:
Вспомним, как решать задачи на доказательство равенства треугольников.
Для того, чтобы доказать равенство треугольников, требуется три равных элемента.
Два равных элемента даются в условии, а третий надо найти на чертеже.
Итак, начнем решение задачи:
1. Рассмотрим ΔMKO и NKO
1) MK = KN (по условию)
2) ∠MKO = ∠KON (по условию)
Ну а теперь, посмотрев на чертеж, можно заметить, что в обоих треугольниках есть общая сторона - MN
3) MN - общая
Следовательно, ΔMKO = ΔNKO по второму признаку равенства треугольников. (По одной стороне и двум прилежащим к ней углам).
Понятно ли я объяснил задачу? Имеются ли вопросы?
Задача решена.
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
Объяснение:
Вспомним, как решать задачи на доказательство равенства треугольников.
Для того, чтобы доказать равенство треугольников, требуется три равных элемента.
Два равных элемента даются в условии, а третий надо найти на чертеже.
Итак, начнем решение задачи:
1. Рассмотрим ΔMKO и NKO
1) MK = KN (по условию)
2) ∠MKO = ∠KON (по условию)
Ну а теперь, посмотрев на чертеж, можно заметить, что в обоих треугольниках есть общая сторона - MN
3) MN - общая
Следовательно, ΔMKO = ΔNKO по второму признаку равенства треугольников. (По одной стороне и двум прилежащим к ней углам).
Понятно ли я объяснил задачу? Имеются ли вопросы?
Задача решена.