Знайдіть більший з кутів, утворених при перетині бісектриси гострого кута прямокутного трикутника і протилежного катета, якщо другий гострий кут трикутника дорівнює 26°.
Т.к. в треугольнике сумма углов равна 180, то угол В=30 градусов.Высота делит АВС на 2 треугольника. Рассмотрим треугольник СDВ, где угол D=90, а угол В=30 градусам. СВ-гипотенуза, CD-катет, противолежащий углу в 30 градусов. Катет, противолежащий углу в 30 градусов равен половине длины гипотенузы, значит гипотенуза в 2 раза больше СD.
ВD=6 корень из 3 умножить на 2, получаем 12 корень из 3.
или
катет равен произведению гипотенузы на синус противолежащего угла,значит гипотенуза ВD равна катет СD делить на синус 30. Синус 30=1/2
ВD=6 корень из 3 умножить на 2, получаем 12 корень из 3.
или
катет равен произведению гипотенузы на синус противолежащего угла,значит гипотенуза ВD равна катет СD делить на синус 30. Синус 30=1/2
Значит ВС равен 12 корень из 3
1. Известно, что объем пирамиды V равен 1/3 произведения площади S основания на высоту h.
2. По условию задачи дано: в основании лежит прямоугольник со сторонами 6 см и 8 см, боковые ребра L имеют длину 13 см.
Высота h пирамиды опущена в точку пересечения диагоналей d прямоугольника, ее значение вычислим по теореме Пифагора:
h² = L² - (1/2 d)², откуда h = √13² - 1/4 d².
D определим из прямоугольного треугольника с катетами 6 см и 8 см:
d = √6² + 8² = √36 + 64 = √100 = 10 см.
Значит h = √169 - 1/4 * 100 = √144 = 12 см.
3. Посчитаем V пирамиды:
V = 1/3 * 6 см * 8 см * 12 см = 192 см³.
ответ: Объем составляет 192 см³.
Объяснение:
все правильное