Диагональ ВD делит трапецию на два прямоугольных треугоьника АВD и ВDС. Так как сумма углов ВАD и ВСD равна 90°. и в то же время сумма острых углов этих треугольников также равна 90°, то угол АВD=ВСD, значит, и ∠ВDС=∠ВАD. Треугольники АВD и ВDС подобны. Из их подобия АD:ВD=ВD:ВС ВДD²=2 ВС Из треугольника ВСD по т. Пифагора ВС²=СD²-ВС² Но ВD²=2ВС Произведя в уравнении замену, получим: 2 ВС=СD²-ВС² ⇒ ВС²+2ВС-25=0 Решим квадратное уравнение. D=b²-4ac=2²-4·1·(-25)=104 ВС₁=(-2+2√26):2=√26-1≈ 4,099 Второй корень отрицательный и не подходит. По т.Пифагора найдем ВD. ВD²=2ВС=8,198 Из С параллельно ВD опустим отрезок С до пересечения с продолжением АD в точке Н. В прямоугольном треугольнике АСН гипотенуза АН=АD+DН DН=ВС=4,099 СН²=ВD²= 8,198 АС²=АН²+СН²=(2+4,099)²+8,198 АС²≈45,3958 АС≈6,7376 ---- [email protected]
Рисунок без буквенных обозначений (кроме C,O,M), обозначишь, если нужно как угодно, хотя всё понятно и так. Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления. МО=3, как катет, лежащий против угла в 30° Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания. Далее вспоминаем свойство медиан Δ-ка: Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины. Поэтому Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Так как сумма углов ВАD и ВСD равна 90°. и в то же время сумма острых углов этих треугольников также равна 90°, то угол АВD=ВСD,
значит, и ∠ВDС=∠ВАD.
Треугольники АВD и ВDС подобны.
Из их подобия
АD:ВD=ВD:ВС
ВДD²=2 ВС
Из треугольника ВСD по т. Пифагора
ВС²=СD²-ВС²
Но ВD²=2ВС
Произведя в уравнении замену, получим:
2 ВС=СD²-ВС² ⇒
ВС²+2ВС-25=0
Решим квадратное уравнение.
D=b²-4ac=2²-4·1·(-25)=104
ВС₁=(-2+2√26):2=√26-1≈ 4,099
Второй корень отрицательный и не подходит.
По т.Пифагора найдем ВD.
ВD²=2ВС=8,198
Из С параллельно ВD опустим отрезок С до пересечения с продолжением АD в точке Н.
В прямоугольном треугольнике АСН гипотенуза
АН=АD+DН
DН=ВС=4,099
СН²=ВD²= 8,198
АС²=АН²+СН²=(2+4,099)²+8,198
АС²≈45,3958
АС≈6,7376
----
[email protected]
Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления.
МО=3, как катет, лежащий против угла в 30°
Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания.
Далее вспоминаем свойство медиан Δ-ка:
Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Поэтому
Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)