В первой задаче высота равна 1. Нужно рассмотреть прямоугольную трапецию, получаемую в сечении плоскостью, перпендикулярной обоим основаниям, проходящем через радиусы описанных вокруг оснований окружностей и боковое ребро пирамиды. Радиус окружности, описанной возле меньшего основания, равен 2/√3 (как радиус окружности, описанной возле равностороннего треугольника). Радиус окружности, описанной возле большего основания, равен 5/√3 (также равносторонний треугольник). Итак, мы имеем дело с прямоугольной трапецией, меньшее основание равно 2/√3, большее основание 5/√3, боковая сторона, равная 2 (по условию - длина бокового ребра), является гипотенузой прямоугольного треугольника. Один катет равен 5/√3 - 2/√3 = 3/√3, тогда другой (равный искомой высоте) будет равен 4 - 3 = 1.
А во второй делаем следующее: проводим апофему и перпендикуляр к ней из центра основания - точки пересечения диагоналей квадрата, лежащего в основании. Будем иметь прямоугольный треугольник с катетом, равным 3 (по условию), и углом в 60 градусов, противолежащим этому катету. Гипотенуза, равная половине длины стороны квадрата, равна 3/sin60 = 2√3, значит, сторона квадрата, лежащего в основании, равна 2*2√3 = 4√3, а площадь основания (квадрата) равна 4√3*4√3 = 48. Теперь найдем высоту этой пирамиды. Она есть катет прямоугольного треугольника, в котором апофема является гипотенузой, угол, противолежащий этому катету, равен 60 градусов, а второй катет мы нашли ранее - 2√3. Следовательно, второй катет - искомая высота - равен 2√3*tg60 = 6. Таким образом, нам стало известно, что площадь основания пирамиды равна 48, высота 6. Находим объем по формуле объема для правильной пирамиды:
Сделаем построение по условию.
Обозначим плоскости α , β.
Прямая m – линия пресечения плоскостей.
По условию т.А принадлежит плоскости β , |AB| ┴ α , |AB|=d
Расстояние от точки А до прямой m отрезок |AC| ┴ m .
Точка В – проекция точки А.
Расстояние от точки B до прямой m отрезок |BC| ┴ m .
По теореме о трех перпендикулярах точки А,В,С лежат в одной плоскости и образуют
прямоугольный треугольник . <ABC =90 Град.
Так как по условию <( α , β) =45 град, следовательно <ACB =45 град.
Значит <BAC =90 - <BCA = 90 -45 =45 град
Треугольник ∆ABC - прямоугольный, равнобедренный. |BC|=|AB|=d
По теореме Пифагора искомое расстояние AC^2 = AB^2 +BC^2 =2d ; AC=d√2
ОТВЕТ d√2
В первой задаче высота равна 1.
Нужно рассмотреть прямоугольную трапецию, получаемую в сечении плоскостью, перпендикулярной обоим основаниям, проходящем через радиусы описанных вокруг оснований окружностей и боковое ребро пирамиды. Радиус окружности, описанной возле меньшего основания, равен 2/√3 (как радиус окружности, описанной возле равностороннего треугольника). Радиус окружности, описанной возле большего основания, равен 5/√3 (также равносторонний треугольник).
Итак, мы имеем дело с прямоугольной трапецией, меньшее основание равно 2/√3, большее основание 5/√3, боковая сторона, равная 2 (по условию - длина бокового ребра), является гипотенузой прямоугольного треугольника. Один катет равен 5/√3 - 2/√3 = 3/√3, тогда другой (равный искомой высоте) будет равен 4 - 3 = 1.
А во второй делаем следующее: проводим апофему и перпендикуляр к ней из центра основания - точки пересечения диагоналей квадрата, лежащего в основании. Будем иметь прямоугольный треугольник с катетом, равным 3 (по условию), и углом в 60 градусов, противолежащим этому катету. Гипотенуза, равная половине длины стороны квадрата, равна 3/sin60 = 2√3, значит, сторона квадрата, лежащего в основании, равна 2*2√3 = 4√3, а площадь основания (квадрата) равна 4√3*4√3 = 48.
Vпирамиды = 1/3*Н*Sоснования = 1/3*6*48 = 96 куб. ед.Теперь найдем высоту этой пирамиды. Она есть катет прямоугольного треугольника, в котором апофема является гипотенузой, угол, противолежащий этому катету, равен 60 градусов, а второй катет мы нашли ранее - 2√3. Следовательно, второй катет - искомая высота - равен 2√3*tg60 = 6. Таким образом, нам стало известно, что площадь основания пирамиды равна 48, высота 6. Находим объем по формуле объема для правильной пирамиды: