Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Катеты есть среднее геометрическое (среднее пропорциональное) между гипотенузой и своей проекцией на гипотенузу.АВС прямоугольный треугольник;АВ (а), АС (b) катеты; ВС (с) гипотенуза;АК - высота; ВК проекция катета АВ на гипотенузу: ВК=10-3,6=6,4 см;СК - проекция катета АС на гипотенузу: СК=3,6 см;а^2=ВС*ВК;а=√6,4*10=8 см;b^2=ВС*СК;b=√10*3,6=6 см;r=(a+b-c)/2;r=(8+6-10)/2=2 см;r можно вычислить по другой формуле.r=S/p радиус вписанной окружности в произвольный треугольник; (эту формулу нужно знать обязательно);S для прямоугольного треугольника S=a*b/2 половина произведения катетов;р полуперимтр; р=Р/2 ( Р периметр);P=a+b+c (a, b катеты; с гипотенуза);S=ab/2 : P/2=ab/2 * 2/P=ab/(a+b+c);S=8*6/(8+6+10)=48/24=2;ответ: 2
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.