1a) В квадрате диагонали пересекаются под прямым углом, следовательно диагональные сечения этого параллелепипеда также взаимно перпендикулярны и перпендикулярны основаниям, так как параллелепипед прямоугольный. Следовательно, искомое сечение EFGH будет проходить через точку К параллельно диагональному сечению ВВ1D1D и представляет собой прямоугольник. 1б) АС=BD =4√2 (диагонали квадрата со стороной 4). АК:КС=1:3, значит АК=(1/4)*АС=(1/2)*АО. Тогда в треугольнике ABD отрезок EF - средняя линия и равен (1/2)*BD. Или EF=2√2. В прямоугольном треугольнике АС1С гипотенуза АС1=4√6 (дано), катет АС=4√2. Значит высота параллелепипеда равна СС1=√(96-32)=8. FG=CC1=8. Тогда площадь сечения равна EF*FG=2*8=16√2 ед². 2a) В квадрате диагонали пересекаются под прямым углом, следовательно сечения этого параллелепипеда, проходящие через диагонали боковых граней АА1В1В и DD1С1 также взаимно перпендикулярны и перпендикулярны этим боковым граням, так как параллелепипед прямоугольный. Следовательно, искомое сечение EFGH будет проходить через точку М параллельно сечению ADC1B1 и представляет собой прямоугольник.
2б) D1С=DC1 =6√2 (диагонали квадрата со стороной 6). D1M:MС=1:5, значит D1M=(1/6)*D1С=(1/3)*D1О. Тогда треугольники DDC1 и ED1H подобны с коэффициентом подобия 1/3 и отрезок EH равен (1/3)*DС1. Или EН=(1/3)*6√2=2√2. В прямоугольном треугольнике BD1D гипотенуза BD1=√88 (дано), катет DD1=6. Значит диагональ основания параллелепипеда по Пифагору равна BD=√(88-36)=√52. Тогда AD=√(BD²-AB²)= √(52-36)=4. EF=AD=4. Площадь сечения равна EF*EH=4*2√2=8√2 ед².
1б) АС=BD =4√2 (диагонали квадрата со стороной 4).
АК:КС=1:3, значит АК=(1/4)*АС=(1/2)*АО. Тогда в треугольнике ABD отрезок EF - средняя линия и равен (1/2)*BD. Или EF=2√2.
В прямоугольном треугольнике АС1С гипотенуза АС1=4√6 (дано), катет
АС=4√2. Значит высота параллелепипеда равна СС1=√(96-32)=8. FG=CC1=8.
Тогда площадь сечения равна EF*FG=2*8=16√2 ед².
2a) В квадрате диагонали пересекаются под прямым углом, следовательно сечения этого параллелепипеда, проходящие через диагонали боковых граней АА1В1В и DD1С1 также взаимно перпендикулярны и перпендикулярны этим боковым граням, так как параллелепипед прямоугольный. Следовательно, искомое сечение EFGH будет проходить через точку М параллельно сечению ADC1B1 и представляет собой прямоугольник.
2б) D1С=DC1 =6√2 (диагонали квадрата со стороной 6).
D1M:MС=1:5, значит D1M=(1/6)*D1С=(1/3)*D1О. Тогда треугольники DDC1 и ED1H подобны с коэффициентом подобия 1/3 и отрезок EH равен (1/3)*DС1. Или EН=(1/3)*6√2=2√2.
В прямоугольном треугольнике BD1D гипотенуза BD1=√88 (дано), катет
DD1=6. Значит диагональ основания параллелепипеда по Пифагору равна BD=√(88-36)=√52. Тогда AD=√(BD²-AB²)= √(52-36)=4. EF=AD=4.
Площадь сечения равна EF*EH=4*2√2=8√2 ед².
Sabc=48 cm²
Объяснение:
Пусть треугольник АВС и АС основание =12 см.
Пусть ВМ -высота, проведенная к основанию.
Пусть О центр вписанной окружности - находится на высоте ВМ, так как треугольник АВС равнобедренный.
Тогда АМ=МС= 12:2=6 см
АО- биссектриса угла О, так как центр вписанной окружности находится в точке пересечения биссектрис треугольника ( то есть на биссектрисе АО).
Тогда tg∡OAM = OM/AM= 3/6=1/2=0.5
Найдем tg∡ A= 2*tg∡OAM/(1-tg²∡AM)=
2*0.5/(1-1/4)=1/3*4=4/3
tg∡ A=4/3
=> BM/MA=4/3
BM=4/3*6 =8
Sabc=(AC*BM)/2= 12*8/2=48 cm²