Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, такие треугольники равны.
Формула объема пирамиды V=S•h/3, где S – площадь основания пирамиды, h - её высота.
Стороны ромба равны. По условию боковые грани наклонены к плоскости основания под углом β.
Если боковые грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проецируется в центр этой окружности.
Центр окружности, вписанной в ромб – точка пересечения его диагоналей, а расстояние от него до сторон равно радиусу вписанной окружности.
Высота пирамиды, радиус вписанной окружности и высота боковой грани образуют прямоугольный треугольник, при этом высота боковой грани и радиус вписанной окружности образуют линейный угол между основанием и боковой гранью, т.к. по т. о 3-х перпендикулярах перпендикулярны стороне ромба (ребру двугранного угла) в одной точке.
Диаметр окружности, вписанной в ромб, перпендикулярен его сторонам, параллелен высоте ромба и равен ей. На рисунке приложения АК = высота ромба. АК=АD•sinα=a•sinα ⇒ HO=r=a•sinα•1/2. Из прямоугольного ∆ МОН высота пирамиды МО=ОН•tgβ=(a•sinα•1/2)tgβ
Дано:
∠MOH = ∠POH ; Луч НО – биссектриса ∠MHP .
∠MHO =∠PHO = (1/2)*∠MHP - - - - - - - - - - - - - - - - - - - -
1) Док -ать Δ MOH = Δ POH
- - - - - - - - - - - - - - - - - - - -
2) дополнительно : ∠MHO = 42⁰, ∠HMO = 28⁰, ∠НОМ = 110⁰. - - - - - - - - - - - - - - - - - - - -
Найти: ∠OHP - ? ; ∠HPO ; ∠НОР . * * *∠OHP ≡∠PHO * * *
|| ∠OHP - ? ; ∠HPO-? ∠НОР - ? ||
* * * ∠НОМ = 180°-(∠MHO+∠HMO) = 180°-(28⁰ +42⁰) =180°- 70⁰=110⁰
! Второй признак равенства треугольников :
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, такие треугольники равны.
см приложение еще и чертеж
ответ: V=a³•sin²α•tgβ/6
Объяснение - очень подробно:
Формула объема пирамиды V=S•h/3, где S – площадь основания пирамиды, h - её высота.
Стороны ромба равны. По условию боковые грани наклонены к плоскости основания под углом β.
Если боковые грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проецируется в центр этой окружности.
Центр окружности, вписанной в ромб – точка пересечения его диагоналей, а расстояние от него до сторон равно радиусу вписанной окружности.
Высота пирамиды, радиус вписанной окружности и высота боковой грани образуют прямоугольный треугольник, при этом высота боковой грани и радиус вписанной окружности образуют линейный угол между основанием и боковой гранью, т.к. по т. о 3-х перпендикулярах перпендикулярны стороне ромба (ребру двугранного угла) в одной точке.
Диаметр окружности, вписанной в ромб, перпендикулярен его сторонам, параллелен высоте ромба и равен ей. На рисунке приложения АК = высота ромба. АК=АD•sinα=a•sinα ⇒ HO=r=a•sinα•1/2. Из прямоугольного ∆ МОН высота пирамиды МО=ОН•tgβ=(a•sinα•1/2)tgβ
S(ABCD)=AD•CD•sinα=a²•sinα
V=a²•sinα•(a•sinα•1/2)tgβ/3=a³•sin²α•tgβ/6