Один из вариантов: 1. Для нахождения высоты пирамиды АВСД необходимо знать длину бокового ребра АД и радиус описанной окружности основания АВС. 2. Радиус описанной окружности считается по формуле: R=АВ/√3=2/√3 3. Боковое ребро АД находится изформулы площади одного такого тр-ка и его основания. Площадь тр-ка АСД равна 2/3*√13, тогда его высота будет находиться из соотношения 2/3*√13=1/2*AB*h=1/2*2*h ⇒ h=2/3*√13 ⇒ по т. Пифагора АД=√(h²+(АВ/2)²)=√(14/3). 4. Искомая высота также ищется по т. Пифагора: H²=АД²-R², ⇒ H=√(14/3 - 4/3)=√10/3 (корень из десяти третьих).
Тогда площадь треугольника, равная 2, равна половине произведения катетов:
Однако для острого угла в прямоугольном треугольнике отношение прилежащего катета к гипотенузе - это косинус угла, а отношение противолежащего катета к гипотенузе - это синус угла
Соответственно, каждый из катетов можно выразить через синус и косинус одного из острых углов:
Т.к. с = 4, получаем:
Получаем ригонометрическое уравнение:
Т.к. мы ищем углы в прямоугольном треугольнике, то
Соответственно попадают в этот интервал только следующие полученные углы:
Итак, мы получили 2 пары углов:
Очевидно, что это одна и та же пара углов, в зависимости от того, какой катет мы брали за а, а какой за b.
1. Для нахождения высоты пирамиды АВСД необходимо знать длину бокового ребра АД и радиус описанной окружности основания АВС.
2. Радиус описанной окружности считается по формуле: R=АВ/√3=2/√3
3. Боковое ребро АД находится изформулы площади одного такого тр-ка и его основания. Площадь тр-ка АСД равна 2/3*√13, тогда его высота будет находиться из соотношения 2/3*√13=1/2*AB*h=1/2*2*h ⇒ h=2/3*√13 ⇒ по т. Пифагора АД=√(h²+(АВ/2)²)=√(14/3).
4. Искомая высота также ищется по т. Пифагора: H²=АД²-R², ⇒ H=√(14/3 - 4/3)=√10/3 (корень из десяти третьих).
или
15° и 75°
Объяснение:
Обозначим в прямоугольном треугольнике
катеты как a, b
гипотенузу как с (с = 4)
и углы как
Причем углы связаны формулой
Тогда площадь треугольника, равная 2, равна половине произведения катетов:
Однако для острого угла в прямоугольном треугольнике отношение прилежащего катета к гипотенузе - это косинус угла, а отношение противолежащего катета к гипотенузе - это синус угла
Соответственно, каждый из катетов можно выразить через синус и косинус одного из острых углов:
Т.к. с = 4, получаем:
Получаем ригонометрическое уравнение:
Т.к. мы ищем углы в прямоугольном треугольнике, то
Соответственно попадают в этот интервал только следующие полученные углы:
Итак, мы получили 2 пары углов:
Очевидно, что это одна и та же пара углов, в зависимости от того, какой катет мы брали за а, а какой за b.
Итак, получаем ответ: