Первое, что приходит на ум в случае с квадратом. Любой треугольник либо является прямоугольным, либо может быть представлен, как два прямоугольных треугольников с общим катетом, который можно считать высотой. Прямоугольный треугольник можно достроить до прямоугольника, при этом очевидно, что искомый треугольник будет занимать ровно половину этого прямоугольника, а значит и его площадь будет равна половине площади прямоугольника. Sпр = произведению сторон, Sпр тр = 1\2 *Sпр = 1\2 *произведение катетов. Любой из катетов по сути является высотой, а второй - основанием. В случае, когда искомый треугольник, как оговаривалось выше, не является прямоугольным, а представляется в виде двух прямоугольных, не трудно заметить, что две стороны прямоугольных, а именно их основание составляют основание исходного, а высоты этих треугольников совпадают с высотой исходного. Нагляднее показать формулой: S не пр = Sпр1 + Sпр2 = 1\2 *а*b + 1\2*b*c = 1\2*b*(a+c), где b - высота, а (a+c) - основание исходного треугольника. Понимаю, что в тексте не очень, но постарался донести идею. Трапеция аналогично представляется в виде двух треугольников и прямоугольника. Затем проводится аналогичное доказательство. Вот.
Прямоугольный треугольник можно достроить до прямоугольника, при этом очевидно, что искомый треугольник будет занимать ровно половину этого прямоугольника, а значит и его площадь будет равна половине площади прямоугольника. Sпр = произведению сторон, Sпр тр = 1\2 *Sпр = 1\2 *произведение катетов. Любой из катетов по сути является высотой, а второй - основанием.
В случае, когда искомый треугольник, как оговаривалось выше, не является прямоугольным, а представляется в виде двух прямоугольных, не трудно заметить, что две стороны прямоугольных, а именно их основание составляют основание исходного, а высоты этих треугольников совпадают с высотой исходного.
Нагляднее показать формулой:
S не пр = Sпр1 + Sпр2 = 1\2 *а*b + 1\2*b*c = 1\2*b*(a+c), где b - высота, а (a+c) - основание исходного треугольника. Понимаю, что в тексте не очень, но постарался донести идею.
Трапеция аналогично представляется в виде двух треугольников и прямоугольника. Затем проводится аналогичное доказательство. Вот.
Круг — часть плоскости, лежащая внутри окружности.
R - радиус круга
D = 2R - диаметр круга
Р = 2πR - периметр круга (длина окружности)
S = π R² - площадь круга
выведем формулу для площади S круга.
Пусть у нас есть правильный n -угольник, со стороной а, в который вписана окружность радиуса r и вокруг которого описана окружность радиуса R.
n-угольник разбит на n треугольников площадью S₁ = 0.5 а · r
Площадь n-угольника равна
Sn = n · 0.5 a · r = 0,5 Р · r (здесь Р - периметр многоугольника)
При n → ∞ получаем r → R, P → C = 2πR и Sn → S
S = 0.5 · 2πR · R
S = πR² - площадь круга