Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Опустим из вершины В высоту ВE на основание AD.
Из вершины С высоту CF. Нижнее основание делится на три отрезка, причем АЕ=FD, а EF=ВС, обозначим AE и FD как х, а EF и BC, как у.
ТОгда средняя линия равна KL=(BC+AD)/2=(x+2y+x)/2=x+y
Т.е. нам нужно найти длину отрезка ED, который равен x+y
Рассмотрим треугольник EBD, он прямоугольный и его угол BDE=60, тогда угол EBD=90-60=30.
Как мы знаем, что катет противолежалий углу 30 градусов равен половине гиппотенузе. Гиппотенуза у нас BD=4, тогда ED=KL=2
ответ: KL=2
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.