Вариант 1). Рассмотрим рисунок 1, данный в приложении. Пусть АВСD - данный квадрат, М - точка касания квадрата и сферы, О - центр сферы. По условию ОА=ОВ=ОС=ОD=8 см. По т. Пифагора R=ОМ=√(ОА²-МА²) Диагональ АС квадрата – гипотенуза двух равных прямоугольных равнобедренных треугольника с катетами 8 см и острыми углами 45°. и равна 8:sin45•=8√2. ⇒ AM=AC:2=4√2 ⇒ Искомый радиус OM=√(64-32)=4√2 см.
* * *
Вариант 2). Возможно, квадрат касается сферы сторонами. Тогда решение будет другим. (см. рис.2)
Квадрат, длина стороны которого равна 8 см, касается сферы (сторонами). Вычислите длину радиуса сферы, если известно, что её центр удалён от вершин квадрата на расстояние, равное 8 см.
Квадрат касается сферы в 4 точках, а плоскость квадрата отсекает от сферы круг, радиус которого равен радиусу окружности, вписанной в квадрат. Длина радиуса вписанной в квадрат окружности равна половине его стороны.
r=8:2=4 см
Пусть центр этой окружности (точка пересечения диагоналей квадрата) будет Н.
Расстояние от центра О сферы до вершины С квадрата равно гипотенузе прямоугольного треугольника ОНС, в котором НС - половина диагонали квадрата, ОН - расстояние от центра сферы до плоскости квадрата. (см. рисунок)
Диагональ квадрата равна его стороне, умноженной на √2, т.е. 8√2. НС =(8√2):2=4√2
Обозначим трапецию АВСД. Проведем в ней две высоты ВН и СЕ. Так как трапеция равнобедренная, то высоты будут отсекать равные отрезки на стороне АД. АН=ЕД=(10-6):2=2. Рассмотрим треугольник СЕД: угол СЕД равен 90 градусов, угол СДЕ равен 60 градусов( по усл) следовательно угол ЕСД будет равен 30 градусам, а так как катет ЕД равен 2 и он лежит против угла равного 30 градусам, значит гипотенуза СД будет равна 4( по св-ву прямоугольного треугольника). Трапеция равнобедренная, значит АВ=СД. Периметр трапеции равен: 6+10+4+4=24 (см)
Вариант 1). Рассмотрим рисунок 1, данный в приложении. Пусть АВСD - данный квадрат, М - точка касания квадрата и сферы, О - центр сферы. По условию ОА=ОВ=ОС=ОD=8 см. По т. Пифагора R=ОМ=√(ОА²-МА²) Диагональ АС квадрата – гипотенуза двух равных прямоугольных равнобедренных треугольника с катетами 8 см и острыми углами 45°. и равна 8:sin45•=8√2. ⇒ AM=AC:2=4√2 ⇒ Искомый радиус OM=√(64-32)=4√2 см.
* * *
Вариант 2). Возможно, квадрат касается сферы сторонами. Тогда решение будет другим. (см. рис.2)
Квадрат, длина стороны которого равна 8 см, касается сферы (сторонами). Вычислите длину радиуса сферы, если известно, что её центр удалён от вершин квадрата на расстояние, равное 8 см.
Квадрат касается сферы в 4 точках, а плоскость квадрата отсекает от сферы круг, радиус которого равен радиусу окружности, вписанной в квадрат. Длина радиуса вписанной в квадрат окружности равна половине его стороны.
r=8:2=4 см
Пусть центр этой окружности (точка пересечения диагоналей квадрата) будет Н.
Расстояние от центра О сферы до вершины С квадрата равно гипотенузе прямоугольного треугольника ОНС, в котором НС - половина диагонали квадрата, ОН - расстояние от центра сферы до плоскости квадрата. (см. рисунок)
Диагональ квадрата равна его стороне, умноженной на √2, т.е. 8√2. НС =(8√2):2=4√2
По т.Пифагора
ОH²=OC²-HC²64-32=32
Обозначим точку касания квадрата и сферы Р.
Тогда R=ОР=√(OH²+PH²)=√32+16)=√48=4√3 см