1) 6 ед. 2) 6 ед.
Объяснение:
1) ΔАВД - равнобедренный, т.к. высота ВС, опущенная из вершины В, разделила АД пополам, и является также медианой.
Значит периметр ΔАВД = 2·АВ+АД.
Т.к. АС=СД, то АД=2·АС, тогда периметр ΔАВД = 2·АВ+2·АС=2·(АВ+АС)
Значит АВ = Ртр.÷2 - АС (где Ртр. - периметр ΔАВД)
АВ=20÷2-4=6
2) ΔАВС - равнобедренный, т.к. биссектриса ВД, опущенная из вершины В, разделила АС пополам, и является также медианой.
Значит АВ=ВС и периметр ΔАВС = 2·АВ+АС.
Для удобства обозначим длину АВ за х. Тогда х-ДС=4 ⇒ ДС=х-4.
Т.к. АС=АД+ДС и ДС=АД, то АС=2·ДС ⇒ АС= 2·(х-4).
Тогда периметр Р = 2х+2(х-4) ⇒
Р=2·(х+х-4)⇒
Р=4(х-2).
х=Р÷4+2
х=32÷4-2=6.
По свойствам параллелограмма, сумма углов, прилежащих к одной стороне, равна 180°.
В задаче сумма двух углов равна 226°. Значит эти углы не могут прилежать к одной стороне,а являются противоположными.
В параллелограмме противоположные углы равны.
Следовательно,эти два угла равны,а их сумма составляет 226°,значит один угол равен 226° : 2 = 113°
Соседние с ними углы раны : 180° -113°= 67°(сумма углов,прилежащих к одной стороне параллелограмма (соседних),равна 180°.
Наибольший угол параллелограмма равен 113°.
1) 6 ед. 2) 6 ед.
Объяснение:
1) ΔАВД - равнобедренный, т.к. высота ВС, опущенная из вершины В, разделила АД пополам, и является также медианой.
Значит периметр ΔАВД = 2·АВ+АД.
Т.к. АС=СД, то АД=2·АС, тогда периметр ΔАВД = 2·АВ+2·АС=2·(АВ+АС)
Значит АВ = Ртр.÷2 - АС (где Ртр. - периметр ΔАВД)
АВ=20÷2-4=6
2) ΔАВС - равнобедренный, т.к. биссектриса ВД, опущенная из вершины В, разделила АС пополам, и является также медианой.
Значит АВ=ВС и периметр ΔАВС = 2·АВ+АС.
Для удобства обозначим длину АВ за х. Тогда х-ДС=4 ⇒ ДС=х-4.
Т.к. АС=АД+ДС и ДС=АД, то АС=2·ДС ⇒ АС= 2·(х-4).
Тогда периметр Р = 2х+2(х-4) ⇒
Р=2·(х+х-4)⇒
Р=4(х-2).
х=Р÷4+2
х=32÷4-2=6.
По свойствам параллелограмма, сумма углов, прилежащих к одной стороне, равна 180°.
В задаче сумма двух углов равна 226°. Значит эти углы не могут прилежать к одной стороне,а являются противоположными.
В параллелограмме противоположные углы равны.
Следовательно,эти два угла равны,а их сумма составляет 226°,значит один угол равен 226° : 2 = 113°
Соседние с ними углы раны : 180° -113°= 67°(сумма углов,прилежащих к одной стороне параллелограмма (соседних),равна 180°.
Наибольший угол параллелограмма равен 113°.