Виносимо 24 за дужки, і перемножуємо праву і ліву частину рівняння за правилом пропорції. У нас виходить квадратне рівняння. Вирішуємо його, і отримуємо два Vпароплава. Одне негативне - ця відповідь не підходить. А друге 29.6 км/год.
у этих треугольников равны две стороны, общая - медиана, и половинки боковой стороны, на которые медиана делит эту боковую сторону, значит, разнятся только две стороны - другая боковая и основание, у двух этих треугольников, Если боковая сторона АВ=ВС равна х, основание АС=х+3, то х+х+х+3=21, откуда х= тогда периметр АВС равен х+х+3+х+3=21, или 3х=18, х=6,х+3=9, т.е. АВ=ВС=6см, АС=6+3=9, АС=9 см. для этих чисел выполняется неравенство треугольника, т.е. с такими сторонами треугольник существует.
6+9>6; 6+9>6; 6+6>9.
если основание АС=х, то боковая АВ=ВС=х+3, тогда периметр АВС равен х+х+3+х+3=21, откуда х=15/3=5, тогда АС=5см, АВ=ВС=5+3=8/см/ 8+8>5; 5+8=13>8; 5+8=13>8, т.е. задача имеет два решения
29,6 км/год
Объяснение:
Час шляху дорівнюватиме часу вниз за течією + час вгору за течією. Тобто: 24 / (Vпароплава + 4) + 24 / (Vпароплава - 4) = 2,5 год.
Приводимо до спільного знаменника і отримуємо:
(24(Vпароплава + 4) + 24(Vпароплава - 4)) / (Vпароплава + 4)(Vпароплава - 4) = 2,5
Виносимо 24 за дужки, і перемножуємо праву і ліву частину рівняння за правилом пропорції. У нас виходить квадратне рівняння. Вирішуємо його, і отримуємо два Vпароплава. Одне негативне - ця відповідь не підходить. А друге 29.6 км/год.
Вот и ответ.
у этих треугольников равны две стороны, общая - медиана, и половинки боковой стороны, на которые медиана делит эту боковую сторону, значит, разнятся только две стороны - другая боковая и основание, у двух этих треугольников, Если боковая сторона АВ=ВС равна х, основание АС=х+3, то х+х+х+3=21, откуда х= тогда периметр АВС равен х+х+3+х+3=21, или 3х=18, х=6,х+3=9, т.е. АВ=ВС=6см, АС=6+3=9, АС=9 см. для этих чисел выполняется неравенство треугольника, т.е. с такими сторонами треугольник существует.
6+9>6; 6+9>6; 6+6>9.
если основание АС=х, то боковая АВ=ВС=х+3, тогда периметр АВС равен х+х+3+х+3=21, откуда х=15/3=5, тогда АС=5см, АВ=ВС=5+3=8/см/ 8+8>5; 5+8=13>8; 5+8=13>8, т.е. задача имеет два решения