Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
180-120=60 - сумма оставшихся углов
Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
По т. Пифагора (2A)²=A²+2²
A=√4/3
ответ: √4/3
Объяснение:
Теорема.
(1-й признак ромба)
Если у параллелограмма диагонали взаимно перпендикулярны, то он является ромбом.
Дано:
ABCD — параллелограмм,
AC и BD — диагонали,
Доказать:
ABCD — ромб.
Доказательство:
1) Рассмотрим треугольники ABO и CBO.
∠AOB=∠COB=90º (так как по условию диагонали AC и BD перпендикулярны).
AO=CO (так как диагонали параллелограмма в точке пересечения делятся пополам).
BO — общий катет.
Следовательно, треугольники ABO и CBO равны (по двум катетам).
2) Из равенства треугольников следует равенство их соответствующих сторон:
AB=BC.
3) CD=AB, AD=BC (как противолежащие стороны параллелограмма).
4) Имеем: ABCD — параллелограмм (по условию),
AB=BC=AD=CD (по доказанному).
Следовательно, ABCD- ромб (по определению).
Что и требовалось доказать.