ав и cd - скрещивающиесярасстояние между скрещивающимися прямыми равно расстоянию от прямой до плоскости, в которой лежит другая прямая.пусть о – середина db1м – середина авом – это и есть расстояние между прямыми ав и db1δ aa1b1, ∠a1=90°по т. пифагораaв1 = √(aa1^2+a1b1^2)=√(2^2+2^2)=√(4+4)=√8=√(4*2)=2√2δ ab1d, ∠а=90°по т. пифагораb1d = √(ad^2+ab1^2)=√(2^2+(2√2)^2)=√(4+8)=√12=2√3b1d: 2=(2√3): 2=√3=doδ amd, ∠а=90°по т. пифагораmd = √(ad^2+am^2)=√(2^2+1^2)=√(4+1)=√5δ mod, ∠o=90°по т. пифагораbo = √(md^2 – od^2)=√((√5)^2+(√3)^2)=√(5+3)=√8=√(4*2)=2√2ответ: 2√2
ав и cd - скрещивающиесярасстояние между скрещивающимися прямыми равно расстоянию от прямой до плоскости, в которой лежит другая прямая.пусть о – середина db1м – середина авом – это и есть расстояние между прямыми ав и db1δ aa1b1, ∠a1=90°по т. пифагораaв1 = √(aa1^2+a1b1^2)=√(2^2+2^2)=√(4+4)=√8=√(4*2)=2√2δ ab1d, ∠а=90°по т. пифагораb1d = √(ad^2+ab1^2)=√(2^2+(2√2)^2)=√(4+8)=√12=2√3b1d: 2=(2√3): 2=√3=doδ amd, ∠а=90°по т. пифагораmd = √(ad^2+am^2)=√(2^2+1^2)=√(4+1)=√5δ mod, ∠o=90°по т. пифагораbo = √(md^2 – od^2)=√((√5)^2+(√3)^2)=√(5+3)=√8=√(4*2)=2√2ответ: 2√2
нам дано высота ступенек и угол 30 градусов
мы можем найти высоту эскалатора
200*20=4000см=400
теперь при тангенса мы можем определить всю длину эскалатора
tg30*x=400
1/*x=400
x=692 метров = 6920 см
и теперь ширина 1 ступеньки
6920/200 =33.6см
при 45 градусах у нас будет равнобедренный треугольник у которого катеты будут раны
а значит высота и ширина будут одинаковыми ,а значит ширина ступеньки будет равна 20 сантиметрам
мы можем найти высоту эскалатора
200*20=4000см=400
tg45*x=400
x=400