перед решением нужно ещё и довольно громоздкое доказательство
площадь боковой поверхности равна произведению высоты боковой грани на полупериметр основания. Но нужно доказать, что высоты у всех граней равны. Кроме того нужно доказать, что высота пирамиды проходит через центр вписанной окружности.
Здесь, по сути три задачи.
Площадь основания по формуле Герона = 48 кв.см радиус вписанной окружности = площадь/п.периметр=48/16=3см высота бок.грани = радиус/cos45=3√2 площ.боковая=3√2 * 16=48√2 ну и для полной добавить найденную площадь основания. Для полного понимания, если вдруг захочется разобраться, читайте Атанасяна 2001, Геометрия-10, задачи 246-248
Противоположные стороны параллелограмма параллельны, ABKD - трапеция.
Диагонали равны (AK=BD) - трапеция равнобедренная.
Равнобедренную трапецию можно вписать в окружность.
Вписанный угол равен половине дуги, на которую опирается.
∠KAD=∪KD/2
∠BDK=∪BK/2
∠BDK=∠KAD/3 => ∪BK =∪KD/3
Смежные стороны ромба равны, AB=AD.
Боковые стороны равнобедренной трапеции равны, AB=KD.
Равные хорды стягивают равные дуги.
∪AB=∪AD=∪KD
∪AB+∪BK+∪KD+∪AD =360 => 10/3 ∪KD =360 => ∪KD=108
∠ABK =(∪AD+∪KD)/2 =∪KD =108
Подробнее - на -
перед решением нужно ещё и довольно громоздкое доказательство
площадь боковой поверхности равна произведению высоты боковой грани на полупериметр основания. Но нужно доказать, что высоты у всех граней равны.
Кроме того нужно доказать, что высота пирамиды проходит через центр вписанной окружности.
Здесь, по сути три задачи.
Площадь основания по формуле Герона = 48 кв.см
радиус вписанной окружности = площадь/п.периметр=48/16=3см
высота бок.грани = радиус/cos45=3√2
площ.боковая=3√2 * 16=48√2
ну и для полной добавить найденную площадь основания.
Для полного понимания, если вдруг захочется разобраться, читайте Атанасяна 2001, Геометрия-10, задачи 246-248