2.
AO = OB (радиусы), а один угол 60°, значит другие две также по 60, значит треугольник равносторонний. Таким образом х = 8.
ответ: 8.
4.
Весь круг - 360°
Дуга KL = 360° - 143° - 77° = 140°
Угол х опирается на эту дугу и он вписанный, значит равен половине дуги:
х = 140°/2 = 70°
ответ: 70°
6.
KN - диаметр, значит дуга KMN равна 180 градусам.
Дуга МК равна 180° - 124° = 56°
Угол MNK вписанный, равен половине дуги МК
х = 56°/2 = 28°
ответ: 28°
8.
Дуга МК равна 360° - 46° - 112° = 202°
х равен половине дуги МК
х = 101°
ответ: 101°
Задачи 4,6,8 однотипные
Пусть плоскости α и β параллельны, прямая а перпендикулярна плоскости α. Докажем, что эта прямая перпендикулярна и плоскости β.
В плоскости α проведем две пересекающиеся прямые b и с.
Так как прямая а перпендикулярна плоскости α, то она перпендикулярна каждой из этих прямых.
В плоскости β проведем прямые d║b и е║с.
Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Значит, а ⊥ d и а ⊥ е.
Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна плоскости, ⇒
а ⊥ β.
2.
AO = OB (радиусы), а один угол 60°, значит другие две также по 60, значит треугольник равносторонний. Таким образом х = 8.
ответ: 8.
4.
Весь круг - 360°
Дуга KL = 360° - 143° - 77° = 140°
Угол х опирается на эту дугу и он вписанный, значит равен половине дуги:
х = 140°/2 = 70°
ответ: 70°
6.
KN - диаметр, значит дуга KMN равна 180 градусам.
Дуга МК равна 180° - 124° = 56°
Угол MNK вписанный, равен половине дуги МК
х = 56°/2 = 28°
ответ: 28°
8.
Дуга МК равна 360° - 46° - 112° = 202°
х равен половине дуги МК
х = 101°
ответ: 101°
Задачи 4,6,8 однотипные
Пусть плоскости α и β параллельны, прямая а перпендикулярна плоскости α. Докажем, что эта прямая перпендикулярна и плоскости β.
В плоскости α проведем две пересекающиеся прямые b и с.
Так как прямая а перпендикулярна плоскости α, то она перпендикулярна каждой из этих прямых.
В плоскости β проведем прямые d║b и е║с.
Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Значит, а ⊥ d и а ⊥ е.
Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна плоскости, ⇒
а ⊥ β.