В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
fox2457667
fox2457667
30.07.2020 10:30 •  Геометрия

Знайдіть периметр ромба авсd, якщо діагональ ас=4см, а тупий кут 120°. ,нужно на !

Показать ответ
Ответ:
fsb001
fsb001
08.10.2020 01:29

Объяснение:

Дано:

Окружность (O;r)

4-угольник ABCD - вписан в (O;r)

продолж.ВА пересек. продолж. CD в т. К.

Доказать:

∆BКС ~ ∆DКA

Доказательство:

Если 4-угольник можно вписать в окружность =>

=> сумма двух противоположных углов равна 180°:

\text{ABCD\small{ вписан в }}(O;r) = \\ = \begin{cases} \angle {ABC}+ \angle {ADC} = 180° \\ \angle {ВСD}+\angle {ВAD}= 180 °\end{cases}

Обозначим для удобства

\begin{cases} \angle {ABC} {= }\alpha \: \: = \: \angle {CDA} = 180° - \alpha \\ \angle {ВСD}{ = } \beta \: \: = \: \: \angle {ВAD}= 180° - \beta \end{cases}

Обратим внимание, что прямые КВ и КС можно расценивать как развернутые (180°) углы: уг.KAB и уг.КDC

\angle {KAB} {= }180°;\:\: \angle {KDC} {= }180°\\

Представив развернутые углы KAB и КDС,как сумму углов, их составляющих

(КАD + BAD и КDA + CDA соответственно) ,

выразим через них углы КAD и КDA:

\\ \angle {KAB} = \angle {KAD}+\angle {BAD}{= }180° = \\ = \angle {KAD} = \angle {KAB} - \angle {BAD} \\ \angle {KAD} =180 - (180 - \beta ) = \beta \:\: \\ \\ \angle {KDC} = \angle {KDA}+\angle {CDA} = 180° = \\ = \angle {KDA} = \angle {KDC} - \angle {CDA} \\ \angle {KDA} =180 - (180 \alpha ) = \alpha \\

А это означает, что:

\angle {KAD} = \beta = \angle {BCD}, \\ \angle {KDA} =\alpha = \angle {ABC}

Также, вследствие того что:

A \in \: KB = \angle {ABC} = \angle {KBC} \\D \in KC = \angle {DCB}=\angle {KCB}

(по сути, АВС и КВС - это один и тот же угол,

DCA и КСА - аналогично).

Рассмотрим ∆BКС и ∆DКA:

\large{{^{\angle {KAD} = \angle {KCB},} _{\angle {KDA} = \angle {KBC}}} \: } \small {= \triangle}BKC \: \sim \: {\triangle}DKA

Что и требовалось доказать.


Дан четырёхугольник ABCD, который можно вписать в окружность. Продолжения его противоположных сторон
0,0(0 оценок)
Ответ:
Аля2011
Аля2011
12.10.2021 21:50

40

Объяснение:

Решение

1) Так как все двугранные углы прямые, то данная фигура является прямой призмой.

Прямая призма - это призма, в которой все боковые грани перпендикулярны к основанию, а высота равна длине бокового ребра.

2) Объём V прямой призмы равен произведению площади S её основания на высоту h:

V = S ⋅ h

Согласно рисунку высота (длина бокового ребра) равна 4:

h = 4

3) Чтобы найти площадь основания, необходимо от площади, рассчитанной по наружным точкам, то есть площади прямоугольника со сторонами 4 в длину и 3 в ширину, отнять площадь впадины, имеющей форму прямоугольника со сторонами 2 в длину и 3-1-1 = 1 в ширину:

S = 4 · 3 - 2·1 = 12 - 2 = 10

4) Находим объём:

V = S ⋅ h = 10 · 4 = 40

ответ: объём многогранника, изображённого на рисунке, равен 40.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота