Точки А и В лежат в плоскости альфа, а точки С и D- в плоскости бета, причём альфа параллельна бета, АВ=СД, а отрезки АС и ВD пересекаются.
а) докажите, что АВ параллельна СD.
б) Один из углов четырёхугольника АВСD равен 65 градусов. Найдите остальные углы
а) АС и ВD пересекаются.
Через две пересекающиеся прямые можно провести плоскость, и притом только одну; то же справедливо и для параллельных прямых.
Следовательно, прямые АВ и СD лежат в той же плоскости. что АС и ВD.
Проведем из D и В перпендикуляры кD и Ве к противоположной плоскости.
Т.к. плоскости α и β параллельны, то кD и Ве параллельны и равны ( на основании того, что это - перпендикуляры между параллельными плоскостями)
Прямые кВ и Dе лежат в одной плоскости кВeD, расстояние между ними равно, следовательно, они параллельны.
АВ принадлежит кВ, DС принадлежит Де, следовательно, АВ||СD.
б) Четырехугольник, в котором противоположные стороны равны и параллельны, - параллелограмм.
Противоположные углы параллелограмма равны.
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°
Острые углы четырехугольника АВСD равны по 65°. Тупые по-180-65=115°———
Объяснение:
∠х = 60°
Обозначим вершины треугольника. Вершину при ∠х - буквой А,
верхнюю вершину как В , вершину при ∠25° - С, точку пересечения медианы с АС как О.
1) Рассмотрим ΔОВС.
ОВ = ОС по построению, следовательно, ΔОВС - равнобедренный и
∠С = ∠ОВС - 25°. Тогда
∠ВОС = 180° - 2*25° = 130°
2) ∠АОВ и ∠ВОС - смежные, их сумма = 180°, значит,
∠АОВ = 180° - 130° = 60°
3) ΔВОА - равнобедренный, т.к. ВО =АО по построению. Тогда
∠х = ∠АВО = (180° - 60°)/2 = 60°
Все три угла в ΔВОА равны (х = ∠АВО =∠АОВ =60°), значит, этот треугольник равносторонний.
Точки А и В лежат в плоскости альфа, а точки С и D- в плоскости бета, причём альфа параллельна бета, АВ=СД, а отрезки АС и ВD пересекаются.
а) докажите, что АВ параллельна СD.
б) Один из углов четырёхугольника АВСD равен 65 градусов. Найдите остальные углы
а) АС и ВD пересекаются.
Через две пересекающиеся прямые можно провести плоскость, и притом только одну; то же справедливо и для параллельных прямых.
Следовательно, прямые АВ и СD лежат в той же плоскости. что АС и ВD.
Проведем из D и В перпендикуляры кD и Ве к противоположной плоскости.
Т.к. плоскости α и β параллельны, то кD и Ве параллельны и равны ( на основании того, что это - перпендикуляры между параллельными плоскостями)
Прямые кВ и Dе лежат в одной плоскости кВeD, расстояние между ними равно, следовательно, они параллельны.
АВ принадлежит кВ, DС принадлежит Де, следовательно, АВ||СD.
б) Четырехугольник, в котором противоположные стороны равны и параллельны, - параллелограмм.
Противоположные углы параллелограмма равны.
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°
Острые углы четырехугольника АВСD равны по 65°. Тупые по-180-65=115°———
Объяснение:
∠х = 60°
Объяснение:
Обозначим вершины треугольника. Вершину при ∠х - буквой А,
верхнюю вершину как В , вершину при ∠25° - С, точку пересечения медианы с АС как О.
1) Рассмотрим ΔОВС.
ОВ = ОС по построению, следовательно, ΔОВС - равнобедренный и
∠С = ∠ОВС - 25°. Тогда
∠ВОС = 180° - 2*25° = 130°
2) ∠АОВ и ∠ВОС - смежные, их сумма = 180°, значит,
∠АОВ = 180° - 130° = 60°
3) ΔВОА - равнобедренный, т.к. ВО =АО по построению. Тогда
∠х = ∠АВО = (180° - 60°)/2 = 60°
Все три угла в ΔВОА равны (х = ∠АВО =∠АОВ =60°), значит, этот треугольник равносторонний.