1) Возможно, тут и как-то по-другому нужно доказывать, но так тоже всё верно: , как диагонали равных квадратов, значит Δ - равнобедренный, О - середина АС, значит - медиана, биссектриса и высота, то есть ⊥ ЧТД
2) Можно по достаточному условию перпендикулярности прямой и плоскости: Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. ⊥ , ⊥ , значит ⊥ , и перпендикулярна любой прямой этой плоскости, в том числе , значит ∠ ЧТД
Можно по теореме о трёх перпендикулярах: Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и самой наклонной. Здесь ещё проще: АВ проведена через основание наклонной , - проекция на плоскость АВС и ⊥, значит ⊥ и ∠ ЧТД
Пусть каждый угол пятиугольника равен соответственно х, 3х, 5х, 16х, 2х.
Составим уравнение -
х+3х+5х+16х+2х = 540°
27х = 540°
х = 20°.
2х = 20°*2 = 40°.
3х = 20°*3 = 60°.
5х = 20°*2 = 100°.
16х = 20°*16 = 320°.
Но здесь есть противоречие, так как в условии написано, что пятиугольник выпуклый, а градусная мера угла выпуклого многоугольника не может превышать 180°.
Следовательно, задача не имеет решений, либо составлена неправильно.
, как диагонали равных квадратов, значит Δ - равнобедренный, О - середина АС, значит - медиана, биссектриса и высота, то есть ⊥
ЧТД
2) Можно по достаточному условию перпендикулярности прямой и плоскости:
Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.
⊥ , ⊥ , значит ⊥ , и перпендикулярна любой прямой этой плоскости, в том числе , значит ∠
ЧТД
Можно по теореме о трёх перпендикулярах:
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и самой наклонной.
Здесь ещё проще: АВ проведена через основание наклонной , - проекция на плоскость АВС и ⊥, значит ⊥ и ∠
ЧТД
Сумма углов любого выпуклого n-угольника вычисляется по формуле : 180°(n-2) ; где n - количество его сторон.
Сумма углов выпуклого пятиугольника = 180°*(5-2) = 540°.
Пусть каждый угол пятиугольника равен соответственно х, 3х, 5х, 16х, 2х.
Составим уравнение -
х+3х+5х+16х+2х = 540°
27х = 540°
х = 20°.
2х = 20°*2 = 40°.
3х = 20°*3 = 60°.
5х = 20°*2 = 100°.
16х = 20°*16 = 320°.
Но здесь есть противоречие, так как в условии написано, что пятиугольник выпуклый, а градусная мера угла выпуклого многоугольника не может превышать 180°.
Следовательно, задача не имеет решений, либо составлена неправильно.