Сумма углов параллелограмма, прилежащих к одной стороне, составляет 180°.
Дан параллелограмм АВСД, где ∠А=х°, ∠Д=х+18°.
Тогда х+х+18=180
2х+18=180
2х=16
х=81
∠А=81°, ∠С=∠А=81°
∠В=∠Д=81+18=99°.
ответ: 81°, 99°, 81°, 99°
2.
ΔАМВ подобен ΔВМС ( по двум углам)
BC/AD=CD/MD
BC/20=8/10
10BC=160
BC=16
3. ответ: 8 см
Объяснение: ЕК, как высота, перпендикулярна DE ⇒ ∆ ЕFK прямоугольный. По т.Пифагора ЕК=√(EF²-KF²)√(36-4)=√32.
Треугольник DEK прямоугольный. DE=EK:sin45°=√32•√2/2=8 см
Или по т.Пифагора DE=√(2•DK²), т.к. второй острый угол ∆ DEK=45°, и DK=EK.
4.∠СDB=∠DBCкак накрест лежащие при параллельных прямых и секущей, но ∠АDВ = ∠ВDC(по условию) значит ΔВСD - равнобедренный, тогда ВС=СD=12, Опустим высоту СК. Тогда АК=ВС=12, КD=18-12=6. По теореме Пифагора находим СК. СК²=СD²-KD²=144-36=108, CK=√108=6√3, площадь равна (12+18)/2 ·6√3= =15·6√3=90√3
Расстояния от центра окружности до боковой стороны -- это расстояния до большей боковой стороны (т.к. до меньшей боковой стороны расстояния будут одинаковы))) т.к. центр вписанной в угол окружности находится на биссектрисе этого угла, СО и DO -- биссектрисы соответствующих углов т.к. углы, прилежащие к боковой стороне трапеции в сумме составляют 180 градусов, то CO _|_ DO и треугольник COD прямоугольный средняя линия трапеции состоит из двух отрезков: радиуса окружности и медианы треугольника COD в прямоугольном треугольнике медиана к гипотенузе равна половине гипотенузы. гипотенуза CD = √(64+16) = 4√5 медиана = 2√5 радиус окружности -- высота прямоугольного треугольника S(COD) = 8*4/2 = 16 S(COD) = r*CD/2 = r*2√5 r = 16 / (2√5) = 16√5 / 10 = 1.6√5 средняя линия трапеции = 1.6√5 + 2√5 = 3.6√5
1.
Сумма углов параллелограмма, прилежащих к одной стороне, составляет 180°.
Дан параллелограмм АВСД, где ∠А=х°, ∠Д=х+18°.
Тогда х+х+18=180
2х+18=180
2х=16
х=81
∠А=81°, ∠С=∠А=81°
∠В=∠Д=81+18=99°.
ответ: 81°, 99°, 81°, 99°
2.
ΔАМВ подобен ΔВМС ( по двум углам)
BC/AD=CD/MD
BC/20=8/10
10BC=160
BC=16
3. ответ: 8 см
Объяснение: ЕК, как высота, перпендикулярна DE ⇒ ∆ ЕFK прямоугольный. По т.Пифагора ЕК=√(EF²-KF²)√(36-4)=√32.
Треугольник DEK прямоугольный. DE=EK:sin45°=√32•√2/2=8 см
Или по т.Пифагора DE=√(2•DK²), т.к. второй острый угол ∆ DEK=45°, и DK=EK.
4.∠СDB=∠DBCкак накрест лежащие при параллельных прямых и секущей, но ∠АDВ = ∠ВDC(по условию) значит ΔВСD - равнобедренный, тогда ВС=СD=12, Опустим высоту СК. Тогда АК=ВС=12, КD=18-12=6. По теореме Пифагора находим СК. СК²=СD²-KD²=144-36=108, CK=√108=6√3, площадь равна (12+18)/2 ·6√3= =15·6√3=90√3
5.
т.к. центр вписанной в угол окружности находится на биссектрисе этого угла,
СО и DO -- биссектрисы соответствующих углов
т.к. углы, прилежащие к боковой стороне трапеции в сумме составляют 180 градусов, то CO _|_ DO и треугольник COD прямоугольный
средняя линия трапеции состоит из двух отрезков: радиуса окружности и медианы треугольника COD
в прямоугольном треугольнике медиана к гипотенузе равна половине гипотенузы.
гипотенуза CD = √(64+16) = 4√5
медиана = 2√5
радиус окружности -- высота прямоугольного треугольника
S(COD) = 8*4/2 = 16
S(COD) = r*CD/2 = r*2√5
r = 16 / (2√5) = 16√5 / 10 = 1.6√5
средняя линия трапеции = 1.6√5 + 2√5 = 3.6√5