1)х+х+х+5=35 3х=30 х=10 ответ:Боковые стороны =10;Основание=15 2)х+х+4х+4х=360 10х=360 х=36 ответ:два угла=36;другие два=144 3)х+2х+2х=40 5х=40 х=8 ответ:боковые стороны=16;основание=8 4)доказательство: 1.Рассмотрим треуг BMD и теуг BKD: 1)BD-общая 2)BM=BK(т.к. М и К -середины боковых сторон,а теуг АВС -равнобедренный) 3)угол MBD=углуDBK(т.к. BD в равнобедренном треуг является медианой,высотой и биссектрисой) Следовательно,треуг BMD=треуг BKD(по первому признаку равенства треугольников) 5)Доказательство: рассмотрим два треугольника: 1)одна сторона будет общая 2)углы при основании равны 3)углы(вверху этого треугольника)будут равны(т.к. Высота будет являтся и биссектрисой) следовательно,треугольники,которые образовала высота,будет равны! 6)не знаю(точнее не уверенна) 7)а)х+4х+4х-90. 9х=270 х=30 ответ:А=30;В=120;С=30 б)эти стороны равны(т.к. Мы узнали,что треугольник равнобедренный)
Проведем DK⊥SC. ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники). Тогда и ВК⊥SC, значит ∠DKB - линейный угол двугранного угла при боковом ребре пирамиды. Обозначим его α. sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒ SC⊥OK. Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине. Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
3х=30
х=10 ответ:Боковые стороны =10;Основание=15
2)х+х+4х+4х=360
10х=360
х=36 ответ:два угла=36;другие два=144
3)х+2х+2х=40
5х=40
х=8 ответ:боковые стороны=16;основание=8
4)доказательство:
1.Рассмотрим треуг BMD и теуг BKD:
1)BD-общая
2)BM=BK(т.к. М и К -середины боковых сторон,а теуг АВС -равнобедренный)
3)угол MBD=углуDBK(т.к. BD в равнобедренном треуг является медианой,высотой и биссектрисой)
Следовательно,треуг BMD=треуг BKD(по первому признаку равенства треугольников)
5)Доказательство:
рассмотрим два треугольника:
1)одна сторона будет общая
2)углы при основании равны
3)углы(вверху этого треугольника)будут равны(т.к. Высота будет являтся и биссектрисой)
следовательно,треугольники,которые образовала высота,будет равны!
6)не знаю(точнее не уверенна)
7)а)х+4х+4х-90.
9х=270
х=30 ответ:А=30;В=120;С=30
б)эти стороны равны(т.к. Мы узнали,что треугольник равнобедренный)
ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники).
Тогда и ВК⊥SC, значит
∠DKB - линейный угол двугранного угла при боковом ребре пирамиды.
Обозначим его α.
sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒
SC⊥OK.
Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине.
Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
ΔOKD: OK = KD · cos (α/2)
Угол α тупой, т.к. sin(α/2) = OD/DK > OD/DC = 1/√2
cos α = - √(1 - sin²α) = - √(1 - 144/169) = - √(25/169) = - 5/13
cos (α/2) = √((1 + cos α)/2) = √((1 - 5/13)/2) = √(8/26) = √(4/13) = 2/√13
Вернемся к ΔOKD:
ОК = KD · cos (α/2) = KD · 2/√13
Подставим в равенство (1):
SC · KD · 2/√13 = 7√13
SC · KD = 7√13 · √13 / 2 = 91/2
Но KD - высота боковой грани SCD, проведенная к ребру SC.
Sscd = 1/2 · SC · KD = 1/2 · 91/2 = 91/4
Тогда площадь боковой поверхности:
Sбок = 4 · Sscd = 4 · 91/4 = 91