АВ и АС -отрезки касательных, проведенных из точки А к окружности с центром О. Найти АВ и АС, если АО=20 см, ∠ ВОС= 120.°
Объяснение:
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания, значит ∠ОВА=∠ОСА=90.
По свойству отрезков касательных АВ=АС .∠ОАВ=∠ОАС.
ΔОАВ=ΔОАС , как прямоугольный по гипотенузе и острому углу : АО -общая, ∠ОАВ=∠ОАС. В равных треугольниках соответственные элементы равны :∠ВОА=∠СОА=60°
Если провести диаметр OY (это я его так обозначил, чтобы как-то потом называть), параллельно CD и перпендикулярно (само собой) AB, то он пройдет через середину AB, то есть точки A и B симметричны относительно OY; Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр. Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим). Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.
АВ и АС -отрезки касательных, проведенных из точки А к окружности с центром О. Найти АВ и АС, если АО=20 см, ∠ ВОС= 120.°
Объяснение:
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания, значит ∠ОВА=∠ОСА=90.
По свойству отрезков касательных АВ=АС .∠ОАВ=∠ОАС.
ΔОАВ=ΔОАС , как прямоугольный по гипотенузе и острому углу : АО -общая, ∠ОАВ=∠ОАС. В равных треугольниках соответственные элементы равны :∠ВОА=∠СОА=60°
ΔАВО-прямоугольный ,ОА=20 , sin60°=ВА/ОА , √3/2=ВА/20
ВА=10√3 .Значит ВА= АС=10√3 см.
Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр.
Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим).
Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.