Отрезок, соединяющий середины диагоналей трапеции равен половине разности основанийТреугольники, образованные основаниями трапеции и отрезками диагоналей до точки их пересечения - подобныТреугольники, образованные отрезками диагоналей трапеции, стороны которых лежат на боковых сторонах трапеции - равновеликие (имеют одинаковую площадь)Если продлить боковые стороны трапеции в сторону меньшего основания, то они пересекутся в одной точке с прямой, соединяющей середины основанийОтрезок, соединяющий основания трапеции, и проходящий через точку пересечения диагоналей трапеции, делится этой точкой в пропорции, равной соотношению длин оснований трапецииОтрезок, параллельный основаниям трапеции, и проведенный через точку пересечения диагоналей, делится этой точкой пополам, а его длина равна 2ab/(a + b), где a и b - основания трапеции
1. по свойству параллельных прямых и секущей <ВСА=<САD=40° (накрест лежащие углы)
рассмотрим ∆ABC AB=BC=> ∆ABC равнобедренный =><ВАС=<ВСА=40°
<А=<САD+<BAC= 40°+40°=80°
<В=180°-2*<ВСА=180°-2*40°=100°
т.к. ABCD AB=CD=> трапеция равнобедренная=> <D=80° <C=100°
2. дополнительное построение СН; СН_L АD
Рассмотрим ∆CHD <H=90°
<DCH=90°-<D=45° => ∆CHD равнобедренный прямоугольный треугольник => СН=НD
т.к. СН _L AD; AB _L AD и BC||AD=>
AH=10; CH=10 => HD=10
AD= AH+HD=10+10=20