В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
9.
<MBA = 120° => <CBA = 180-120 = 60°.
<CBA = 60° => <A = 90-60 = 30°.
Теорема о 30-градусном угле такова: катет, противолежащий углу 30-градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: BC = AB/2.
У нас есть 2 условия: BC = AB/2; BC+AB = 36.
Составим из этих условий систему уравнений, с переменными: BC = x; AB = y.
Вывод: AB = 24; BC = 12.
10.
Так как все стороны равны, то треугольник — равносторонний, тоесть каждый из внутренних углов равен: 180/3 = 60°.
MP == PK = MK/2 = 13/2 = 6.5.
PK = 6.5(гипотенуза)
<K = 60° ⇒ <RPK = 90-60 = 30°.
По теорема о 30-градусном угле: RK = PK/2 = 6.5/2 = 3.25.
RK = 3.25; NK = 13 => NR = 13-3.25 = 9.75.
Вывод: NR = 9.75.