Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.
Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.
Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма
Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.
Геометрические места точек.
Решение задач с геометрических преобразований и геометрических мест.
Теорема Чевы и теорема Менелая.
Эллипс, гипербола, парабола как геометрические места точек.
Неразрешимость классических задач на построение.
Треугольникомназывается фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинамитреугольника, а отрезки - его сторонами.
Биссектриса
Биссектриса угла – это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
Свойства биссектрис треугольника
· Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
· Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.
· Биссектрисы внутреннего и внешнего углов перпендикулярны.
· Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трех вневписанных окружностей этого треугольника.
· Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
угол А - 36 градусов, угол В - 27 градусов, угол С - 117 градусов.
Объяснение:
1. По теореме косинусов: а^2 + b^2 + c^2 = 2 x b x c x cos C
cos C = (b^2 + c^2 - a^2) / 2 x b x c
cosC = (4^2 + 6^2 - 3^2) / 2 x 4 x 6
(16 + 36 - 9) / 48 = 43 / 48 = 0.8958
угол С по таблице Брадиса примерно равен 27 градусов.
2. соs A = cos C = (a^2 + c^2 - b^2) / 2 x a x c
cosA = (3^2 + 6^2 - 4^2) / 2 x 3 x 6 = (9 + 36 - 16) / 36 = 29 / 36 = 0.8055
угол A по таблице Брадиса примерно равен 36 градусов.
3. Угол В = 180 - А - С = 180 - 36 - 27 = 117
Объяснение:
Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.
Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.
Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма
Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.
Геометрические места точек.
Решение задач с геометрических преобразований и геометрических мест.
Теорема Чевы и теорема Менелая.
Эллипс, гипербола, парабола как геометрические места точек.
Неразрешимость классических задач на построение.
Треугольникомназывается фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинамитреугольника, а отрезки - его сторонами.
Биссектриса
Биссектриса угла – это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
Свойства биссектрис треугольника
· Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
· Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.
· Биссектрисы внутреннего и внешнего углов перпендикулярны.
· Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трех вневписанных окружностей этого треугольника.
· Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.