Площадь полной поверхности правильно треугольной пирамиды найдем по формуле : S= 1/2*Р*L +Sосн , где Р -периметр , L - апофема пирамиды , Sосн - площадь основания . Площадь основания найдем по формуле : S осн = sqrt (p*(p-a)*(p-b)*(p-c)) , где р - полупериметр треугольника = 8*3/2= 12см ,a , b и c - стороны треугольника . А так как все стороны треугольника равны , то S осн = sqrt (p*(p-a)^3) = sqrt (12 * (12 - 8)^3) = sqrt (12 * 4^3) =sqrt(12*64) = sqrt (768) =sqrt (3*4^4) =16*sqrt(3) см^2 /
Сумма оснований равна 24.Сумма боковых сторон равна сумме оснований. Если в четырехугольник можно вписать окружность то суммы противоположных сторон равны. Это доказывается легко. Нам нужно доказать и обратное утверждение. Оно доказывается следующим построением. Рассмотрим такой четырехугольник. Внишем окружность касающуюся трех сторон. Легко видеть, что четвертая сторона может быть проведена единственным образом, как касательная к окружности проходящая через одну из вершин четырехугольника. Значит описанный вокруг окружности четырехугольник совпадет с заданным.
Площадь полной поверхности правильно треугольной пирамиды найдем по формуле : S= 1/2*Р*L +Sосн , где Р -периметр , L - апофема пирамиды , Sосн - площадь основания . Площадь основания найдем по формуле : S осн = sqrt (p*(p-a)*(p-b)*(p-c)) , где р - полупериметр треугольника = 8*3/2= 12см ,a , b и c - стороны треугольника . А так как все стороны треугольника равны , то S осн = sqrt (p*(p-a)^3) = sqrt (12 * (12 - 8)^3) = sqrt (12 * 4^3) =sqrt(12*64) = sqrt (768) =sqrt (3*4^4) =16*sqrt(3) см^2 /
S =1/2*8*3*6 + 16sqrt (3) = 72 + 16*sqrt(3) = 72 +16*1.73 =72 +27.7 = 100 см^2
Рассмотрим такой четырехугольник. Внишем окружность касающуюся трех сторон. Легко видеть, что четвертая сторона может быть проведена единственным образом, как касательная к окружности проходящая через одну из вершин четырехугольника. Значит описанный вокруг окружности четырехугольник совпадет с заданным.