Докажем это свойство. Пусть a - произвольная плоскость. Отметим на ней любые три точки A, B, C, не лежащие на одной прямой. Проведем через них плоскость a'.
Докажем, что при рассматриваемом движении плоскость a переходит в плоскость a'.
Пусть X - произвольная точка плоскости a. проведем через нее какую-нибудь прямую a в плоскости a, пересекающую треугольник ABXC в двух точках Y и Z. Прямая а перейдет при движении в некоторую прямую a'. Точки Y и Z прямой a перейдут в точки Y' и Z', принадлежащие треугольнику A'B'C', а значит, плоскости a'.
Итак прямая a' лежит в плоскости a'. Точка X при движении переходит в точку X' прямой a', а значит, и плоскости a', что и требовалось доказать.
В пространстве, так же как и на плоскости, две фигуры называются равными, если они совмещаются движением.
III. Виды движения: симметрия относительно точки, симметрия относительно прямой, симметрия относительно плоскости, поворот, движение, параллельный перенос.
с английским нужно раскрыть скобки и поставить в нужную форму
1. We (1) (miss) the first act of the play because when we (2) (arrive) at the theatre the performance already (3) (start) .
2. At the time of the trial last summer Hinkley (4) (be) in prison for eight months.
3. The staff (5) (pay) weekly but now they receive a monthly salary.
4. Denise (6) (modal verb + leave) school early on Wednesday because she (7) (take) her driving test.
5. What’s the point in (8) (argue) with people who (9) (hold) very strong opinions?
6. Many of the survivors (10) (work) in the fields when the earthquake (11) (to strike) .
Phil (12) (stand) at the door soaked from head to toe: he (13) (run) in the rain.
8. Jim (14) (leave) on the early flight the next morning so he (15) (make) his excuses and (16) (leave) the party before midnight.
9. It seems to me, Minister, that the Government (17) (break) all its pre-election promises regarding the Health Service, (18) ?
10. It (19) (must + rain) really hard. All the passers-by (20) (be) soaked through.
Движение переводит плоскость в плоскость.
Докажем это свойство. Пусть a - произвольная плоскость. Отметим на ней любые три точки A, B, C, не лежащие на одной прямой. Проведем через них плоскость a'.
Докажем, что при рассматриваемом движении плоскость a переходит в плоскость a'.
Пусть X - произвольная точка плоскости a. проведем через нее какую-нибудь прямую a в плоскости a, пересекающую треугольник ABXC в двух точках Y и Z. Прямая а перейдет при движении в некоторую прямую a'. Точки Y и Z прямой a перейдут в точки Y' и Z', принадлежащие треугольнику A'B'C', а значит, плоскости a'.
Итак прямая a' лежит в плоскости a'. Точка X при движении переходит в точку X' прямой a', а значит, и плоскости a', что и требовалось доказать.
В пространстве, так же как и на плоскости, две фигуры называются равными, если они совмещаются движением.
III. Виды движения: симметрия относительно точки, симметрия относительно прямой, симметрия относительно плоскости, поворот, движение, параллельный перенос.