А) BADC - пирамида 1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||) ч.т.д б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC А отношение площадей подобных ▲ равно квадрату коэффициенту подобия. S1:S2=k^2 S2=S1:k^2 S2=48:2^2=12см^2 ответ:12 см^2
У равнобедренного треугольника боковые стороны равны.
Пусть по 10 см будут боковые стороны, тогда основание должно быть равно: Р-(10+10)=50-20=30 (см).
Однако треугольник с такими сторонами: 10см,10см,30см не может существовать, поскольку одна его сторона - основание больше чем сумма двух других сторон: 30 >10+10.
Таким образом, 10 cм может быть только основание такого треугольника, значит ее боковые стороны (каждая) равны: (Р-10):2=20 (см)
ответ: две боковые стороны треугольника по 20см, основание - 10 см
1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC
Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||)
ч.т.д
б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC
А отношение площадей подобных ▲ равно квадрату коэффициенту подобия.
S1:S2=k^2
S2=S1:k^2
S2=48:2^2=12см^2
ответ:12 см^2
У равнобедренного треугольника боковые стороны равны.
Пусть по 10 см будут боковые стороны, тогда основание должно быть равно: Р-(10+10)=50-20=30 (см).
Однако треугольник с такими сторонами: 10см,10см,30см не может существовать, поскольку одна его сторона - основание больше чем сумма двух других сторон: 30 >10+10.
Таким образом, 10 cм может быть только основание такого треугольника, значит ее боковые стороны (каждая) равны: (Р-10):2=20 (см)
ответ: две боковые стороны треугольника по 20см, основание - 10 см