Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Формула площади треугольника: Sт = (1/2)·a·b·Sinα, где а и b -стороны треугольника, а α - угол между ними. Тогда
Sabc = (1/2)·2·10·√3/2 = 5√3 см².
Формула площади параллелограмма: Sп = a·b·Sinα, где а и b -стороны треугольника, а α - угол между ними. Тогда
Sabcd = 2·10·√3/2 = 10√3 см².
Или так:
Проведем высоту СН к стороне АВ. Тогда в прямоугольном треугольнике ВСН ∠ ВСН= 30° (по сумме острых углов прямоугольного треугольника) и ВН = 1 см, как катет, лежащий против угла 30°.
По Пифагору СН = √(ВС²-ВН²) = √(2²-1²) = √3 см. - высота треугольника АВС и параллелограмма ABCD.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Sabc = 5√3 см².
Sabcd = 10√3 см².
Объяснение:
Формула площади треугольника: Sт = (1/2)·a·b·Sinα, где а и b -стороны треугольника, а α - угол между ними. Тогда
Sabc = (1/2)·2·10·√3/2 = 5√3 см².
Формула площади параллелограмма: Sп = a·b·Sinα, где а и b -стороны треугольника, а α - угол между ними. Тогда
Sabcd = 2·10·√3/2 = 10√3 см².
Или так:
Проведем высоту СН к стороне АВ. Тогда в прямоугольном треугольнике ВСН ∠ ВСН= 30° (по сумме острых углов прямоугольного треугольника) и ВН = 1 см, как катет, лежащий против угла 30°.
По Пифагору СН = √(ВС²-ВН²) = √(2²-1²) = √3 см. - высота треугольника АВС и параллелограмма ABCD.
Тогда Sabc = (1/2)·AB·CH = (1/2)·10·√3 = 5√3 см².
Sabcd = AB·CH = 10·√3 см².