Минут 5 ломал голову, с чего вообще начать) Потом вспомнил про подобие треугольников.
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
Минут 5 ломал голову, с чего вообще начать) Потом вспомнил про подобие треугольников.
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
3. Их произведение
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
3. Их произведение