В сечении получается прямоугольный треугольник с катетом 16 (это высота пиармиды), а второй катет - это высота прямоугольного треугольника в основании пирамиды, проведенная к гипотенузе (раз мы сечем плоскостью перпендикулярной гипотенузе, то и линяя пересечения плоскостей перпендикулярна ей, то есть это - высота треугольника).
Треугольник с катетами 15 и 20, поэтому гипотенуза 25 (подобен египетскому 3,4,5).
Высоту его можно сосчитать кучей сопособов всего так
h*25 = 15*20; h = 12;
Итак, в сечении прямоугольный треугольник с катетами 12 и 16 (опять 3,4,5:), его площадь 12*16/2 = 96;
В этом 4угольнике диагонали взаимно перпендикулярны, и одна из них - диаметр окружности, то есть 6. Площадь такого 4угольника равна половине произведения диагоналей (докажите, это просто). Значит расстояние между точками касания 12*2/6 = 4. А половина - 2. Значит sin(Ф) = 2/3. Ф - половина центрального угла хорды, соединяющей точки касания. ОЧЕНЬ ЛЕГКО увидеть, что Ф - угол при большом основании трапеции (просто стороны углов перпендикулярны, см. рисунок, там отмечено). А дальше, вычисляете боковую сторону (диаметр 6 делить на sin(Ф) = 2/3), она равна средней линии (почему? - это следует из свойства описанного 4угольника - суммы боковых сторон равны сумме оснований, а боковые стороны равны между собой, значит, боковая сторона равна средней линии :)), умножаете на диаметр (то есть на высоту трапеции), задача решена. Собрав все это получаем
В сечении получается прямоугольный треугольник с катетом 16 (это высота пиармиды), а второй катет - это высота прямоугольного треугольника в основании пирамиды, проведенная к гипотенузе (раз мы сечем плоскостью перпендикулярной гипотенузе, то и линяя пересечения плоскостей перпендикулярна ей, то есть это - высота треугольника).
Треугольник с катетами 15 и 20, поэтому гипотенуза 25 (подобен египетскому 3,4,5).
Высоту его можно сосчитать кучей сопособов всего так
h*25 = 15*20; h = 12;
Итак, в сечении прямоугольный треугольник с катетами 12 и 16 (опять 3,4,5:), его площадь 12*16/2 = 96;
смотрите чертеж.
В этом 4угольнике диагонали взаимно перпендикулярны, и одна из них - диаметр окружности, то есть 6. Площадь такого 4угольника равна половине произведения диагоналей (докажите, это просто). Значит расстояние между точками касания 12*2/6 = 4. А половина - 2. Значит sin(Ф) = 2/3. Ф - половина центрального угла хорды, соединяющей точки касания. ОЧЕНЬ ЛЕГКО увидеть, что Ф - угол при большом основании трапеции (просто стороны углов перпендикулярны, см. рисунок, там отмечено). А дальше, вычисляете боковую сторону (диаметр 6 делить на sin(Ф) = 2/3), она равна средней линии (почему? - это следует из свойства описанного 4угольника - суммы боковых сторон равны сумме оснований, а боковые стороны равны между собой, значит, боковая сторона равна средней линии :)), умножаете на диаметр (то есть на высоту трапеции), задача решена. Собрав все это получаем
S = (2*r)^2/sin(Ф) = 6^2*3/2 = 54.