2. Так как известно, что KL перпендикулярно АВ, то углы ALK и BLK равны 90 градусам. Также нас даны равные углы в условии AKL и BKL, а сторона KL - общая, следовательно, треугольники равны по двум углам и стороне между ними (второй признак равенства треугольников).
3. Периметр треугольника =a+b+c a+b+c=28. Треугольник существует тогда, когда каждая его сторона МЕНЬШЕ суммы двух других Для первого случая: пусть a=15, тогда 15+b+c=28 b+c=13 < a, следовательно НЕТ
Для второго случая: пусть a=14, тогда 14+b+c=28 b+c=14 = a, следовательно НЕТ
Для третьего случая: пусть a=13, тогда 13+b+c=28 b+c=15 > a, следовательно ДА
3. Периметр треугольника =a+b+c
a+b+c=28. Треугольник существует тогда, когда каждая его сторона МЕНЬШЕ суммы двух других
Для первого случая: пусть a=15, тогда
15+b+c=28
b+c=13 < a, следовательно НЕТ
Для второго случая: пусть a=14, тогда
14+b+c=28
b+c=14 = a, следовательно НЕТ
Для третьего случая: пусть a=13, тогда
13+b+c=28
b+c=15 > a, следовательно ДА
2
Угол А + угол С =156°
угол В=180 - (угол А+ угол С)=180-156=24°
т.к углы при основании равнобедренного треугольника равны, то:
угол А=угол С= 1/2•156=78°
ответ:79;24;78
1
т.к угол АОС=110°
то угол DOC=180- угол АОС=180-110=70°(т.к смежные углы в сумме дают 180°)
угол ВОА=углу DOC=70°(т.к вертикальные)
Рассмотрим треугольник СОD
(угол ОDC=углу ADC)
угол С= 180 - угол DOC- угол ODC=180-70-45=65°
Рассмотрим треугольник ВАО
(угол АВС=АВО)
угол ВАО=180- угол АВО- угол ВОА=180-65-70=45°
т.к угол ВАО=ODC=45°
т.к АВ=CD
т.к угол АВО=C=65°
то треугольники равны по 2 ому признаку