1). Треугольники АМВ и СМВ равны по первому признаку равенства треуг-ов: две стороны и угол между ними одного треуг-ка соответственно равны двум сторонам и углу между ними другого: - АВ=СВ, т.к. АВС равнобедренный; - ВМ - общая сторона; - углы АВМ и СВМ равны, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и биссектрисой.
2). Треугольники AMD и CMD также равны по первому признаку равенства: - AD=CD, т.к. BD - медиана АВС; - MD - общая сторона; - углы ADM и CDM - прямые, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и высотой.
ЗАДАЧА 1.1) Найдем длины сторон тр-ка АВС по формуле расстояния между двумя точками:AB=sqrt((2+6)^2+(4-1)^2)=sqrt(64+9)=sqrt(73);BC=sqrt((2-2)^2+(-2-4)^2)=sqrt(0+36)=sqrt(36)=6;AC=sqrt((2+6)^2+(-2-1)^2)=sqrt(64+9)=sqrt(73).Итак, стороны АВ и АС равны, значит тр-к АВС - равнобедренный, ч.т.д.2) ВС - основание равнобедренного тр-ка. Высота АР, проведенная к основанию, является так же медианой, т.е. Р - середина стороны ВС. Найдем координаты точки Р по формулам координат середины отрезка: х=(2+2)/2=2; у=(4-2)/2=1, т.е. Р(2;1). Тогда длина отрезка АР=sqrt((2+6)^2+(1-1)^2)=sqrt(64+0)=8.ЗАДАЧА 2.Из уравнения окр-ти видно, что центр окр-ти находится в точке (2;-1). Так как прямая параллельна оси ОУ и проходит через точку (2;-1), то она имеет уравнение х=2
- АВ=СВ, т.к. АВС равнобедренный;
- ВМ - общая сторона;
- углы АВМ и СВМ равны, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и биссектрисой.
2). Треугольники AMD и CMD также равны по первому признаку равенства:
- AD=CD, т.к. BD - медиана АВС;
- MD - общая сторона;
- углы ADM и CDM - прямые, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и высотой.