1) Каждая точка биссектрисы угла равноудалена от сторон этого угла. Значит, расстояние от т. О до MN=9 Надеюсь, техникой построения при циркуля и линейки отрезков, углов, параллелных прямых, перпендикуляров и биссектрисс владеешь? Если нет- читать дальше нет смысла, нужно учиться это делать.
2)пусть нужно построить прямоугольный треуг АВС, где С будет прямой угол а) строим прямую, на ней отмечаем гипотенузу АВ б) от прямой откладываем данный угол с вершиной в т. В в) из т. А проводим перпендикуляр к другому лучу точка пересечения будет т.С все. 3) решений этой задачи несколько и все интересные и простые. вот одно из них. а) проведи прямую и поставь т.О б) начерти окружность любого радиуса с центром в т.О точки пересечения прямой и окружности обозначь А и В. АВ- диаметр. в) из т. В раствором циркуля равным радиусу поставь засечку на окружности - т.С получился прямоуг. треугольник у АВС, (С=90).у которого катет в 2 раза меньше гипотенузы, значит, угол А=30 г) продли отрезок СА дальше, поставь т. Д тогда угол ДАВ=180-30=150 все.
Надеюсь, техникой построения при циркуля и линейки отрезков, углов, параллелных прямых, перпендикуляров и биссектрисс владеешь? Если нет- читать дальше нет смысла, нужно учиться это делать.
2)пусть нужно построить прямоугольный треуг АВС, где С будет прямой угол
а) строим прямую, на ней отмечаем гипотенузу АВ
б) от прямой откладываем данный угол с вершиной в т. В
в) из т. А проводим перпендикуляр к другому лучу
точка пересечения будет т.С все.
3) решений этой задачи несколько и все интересные и простые.
вот одно из них.
а) проведи прямую и поставь т.О
б) начерти окружность любого радиуса с центром в т.О
точки пересечения прямой и окружности обозначь А и В. АВ- диаметр.
в) из т. В раствором циркуля равным радиусу поставь засечку на окружности - т.С
получился прямоуг. треугольник у АВС, (С=90).у которого катет в 2 раза меньше гипотенузы, значит, угол А=30
г) продли отрезок СА дальше, поставь т. Д
тогда угол ДАВ=180-30=150
все.
Например, для ∠A∠A, внешними будут углы ∠1∠1 и ∠2∠2 (см. рис.)

Свойства внешних углов треугольника
Сумма внешних углов треугольника, взятых по одному при каждой вершине, равна 360∘360∘.
Сумма внешнего и внутреннего угла при одной вершине равна 180∘180∘.
Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
∠1=∠B+∠C∠1=∠B+∠C
Примеры решения задач
Задание. В треугольнике ΔMNKΔMNK, внешний угол ∠M∠M равен 120∘120∘, а угол ∠N=65∘∠N=65∘. Найти угол ∠K∠K.
Решение. По теореме о внешнем угле∠M=∠N+∠K∠M=∠N+∠K. Подставляя в это равенство исходные данные, получим
120∘=65∘+∠K120∘=65∘+∠K
Выразим ∠K:∠K=120∘−65∘⇒∠K=55∘∠K:∠K=120∘−65∘⇒∠K=55∘
ответ. ∠K=55∘∠K=55∘
Задание. Внешние углы при двух вершинах треугольник равны 70∘70∘ и 150∘150∘. Найти внутренний угол при третьей вершине.
Решение. Обозначим внешние углы ∠1,∠2,∠3∠1,∠2,∠3, а соответствующие им внутренние -