биссектрисса делит угол на два равных угла по определению. перпендикуляр с биссектриссой делят треугольник на четыре части две из которых образуют два прямых треугольника с одной вершиной. Достаточно доказать что эти два треугольника равны и будет доказано что их гипотенузы так же равны.Но у них два одинаковых угла : первые образованы биссектрисой и по определению равны.Вторые прямые ( по определению перпендикуляра) и также равны между собой и равны 90 градусов.Т.к. сумма углов в треугольнике равна 180 градусам ,то это значит и третьи углы в треугольниках равны. А следовательно и треугольники равны между собой.следовательно у них равные гипотенузы, как собственно и катеты.
латиница заменена на кириллицу, Квадрат МНРК, МН=НР=РК=МК=12, ДО-перпендикуляр к плоскости МНРК, ДЩ=8, проводим перпендикуляр ОА на НР, ОА=1/2МН=12/2=6, треугольник ДОА прямоугольный, ДА-расстояние от Д до НР=корень(ДО в квадрат+ОА в квадрате)=корень(64+36)=10, МР=НК=корень(МН в квадрате+НР в квадрате)=корень(144+144)=12*корень2, МО=НО=РО=КО=МР/2=12*корень2/2=6*корень2, МД=НД, треугольник МДО прямоугольный, МД=корень(ДО в квадрате+МО в квадрате)=корень(64+72)=корень136=НД, треугольник МДН равнобедренный, проводим высоту ДВ =медиане на МН, МВ=ВН=1/2МН=12/2=6, треугольник МДВ прямоугольный, ДВ=корень(МД в квадрате-МВ в квадрате)=корень(136-36)=10, площадь МДН=1/2МН*МД=1/2*12*10=60, площадь проекции=площади треугольника МОН=1/2*МО*НО=1/2*6*корень2*6*корень2=36, треугольник МОН прямоугольный, равнобедренный, ОВ - высота на МН=медиане, медиана в прямоугольном треугольнике проведенная к гипотенузе=1/2гипотенузы=1/2МН, ОВ-расстояние между прямыми ОД и МН=1/2МН=12/2=6