46. Если скалярное произведение векторов равно нулю, то векторы перпендикулярны.
-2*3-у+1*2=0; у=2-6; у=-4
42. 1)(3;0;-4)*(5;0;-12)=15+48=63; Длина вектора а равна √(9+16)=5; вектора b равна √(25+144)=13 ; cosα=63/(5*13)=63/65; α=arccos(63/65)
2)(-2;2;-1)*(-6;3;6)=12+6-6=12; Длина вектора а равна √(4+4+1)√9=3; вектора b равна √(36+9+36)=9 ; cosα=12/(9*3)=4/9; α=arccos(4/9)
3) а+b=(1;-1;2)+(0;2;1)=(1;1;3)
а-b=(1;-3;1); (а+b)*(а-b)=(1;1;3)(1;-3;1)=1-3+3=1; Длина вектора а+b равна √(1+1+9)√11; вектора а-b равна √(1+9+1)=√11 ; cosα=1/(√11*√11)=1/11; α=arccos(1/11)
АС=8√3, ее половина =4√3, Высоту найдем из прямоугольного треугольника, образованного высотой, половиной основания и боковой стороной. Высота ВН=√(64-48)=4
Второй
Площадь равна 8²sin120°/2=16√3, а с другой стороны, та же площадь равна АС*ВН/2=АС*ВН/2=4√3*ВН/2=16√3, откуда ВН=4см
Третий
Угол А при основании равнобедренного ΔАВС равен (180°-120°)/2=30°
В Δ АВН высота ВН лежит против угла в 30 °, поэтому равна половине гипотенузы АВ, т.е. 8/2=4/см/
46. Если скалярное произведение векторов равно нулю, то векторы перпендикулярны.
-2*3-у+1*2=0; у=2-6; у=-4
42. 1)(3;0;-4)*(5;0;-12)=15+48=63; Длина вектора а равна √(9+16)=5; вектора b равна √(25+144)=13 ; cosα=63/(5*13)=63/65; α=arccos(63/65)
2)(-2;2;-1)*(-6;3;6)=12+6-6=12; Длина вектора а равна √(4+4+1)√9=3; вектора b равна √(36+9+36)=9 ; cosα=12/(9*3)=4/9; α=arccos(4/9)
3) а+b=(1;-1;2)+(0;2;1)=(1;1;3)
а-b=(1;-3;1); (а+b)*(а-b)=(1;1;3)(1;-3;1)=1-3+3=1; Длина вектора а+b равна √(1+1+9)√11; вектора а-b равна √(1+9+1)=√11 ; cosα=1/(√11*√11)=1/11; α=arccos(1/11)
ответ: 4 см.
Объяснение:
По теореме косинусов.
64+64+2*8*8*1/2=АС²
АС=8√3, ее половина =4√3, Высоту найдем из прямоугольного треугольника, образованного высотой, половиной основания и боковой стороной. Высота ВН=√(64-48)=4
Второй
Площадь равна 8²sin120°/2=16√3, а с другой стороны, та же площадь равна АС*ВН/2=АС*ВН/2=4√3*ВН/2=16√3, откуда ВН=4см
Третий
Угол А при основании равнобедренного ΔАВС равен (180°-120°)/2=30°
В Δ АВН высота ВН лежит против угла в 30 °, поэтому равна половине гипотенузы АВ, т.е. 8/2=4/см/