Свойство --- это характеристика известного объекта
(например, если дан ромб, то из этого следует,
что его диагонали взаимно перпендикулярны)))
а признак --- это характеристика неизвестного объекта, т.е.
необходимо определить что это за объект (по признакам)))
т.е. если сказано, что диагонали 4-угольника взаимно перпендикулярны,
то из этого не следует, что это ромб (это НЕ признак)))
если стороны 4-угольника равны, то точно ничего утверждать нельзя
--- может быть это ромб, а может быть это квадрат --- это НЕ признак))
а вот если известно, что это квадрат,
то точно у него стороны равны (это свойство)))
если известно, что это ромб,
если диагонали 4-угольника точкой пересечения делятся пополам,
то это точно параллелограмм (это ПРИЗНАК)))
это может быть и прямоугольник, это может быть и ромб
(они же все являются параллелограммами)))
дан треугольник (какой-то, не известно какой),
но про него известно, что две стороны у него равны (это ПРИЗНАК)
---вывод: это точно равнобедренный треугольник
дан равнобедренный треугольник (известно какой)
---вывод: у него две стороны точно равны (это СВОЙСТВО)
У треугольников ABC и DEC стороны общего угла пропорциональны.
CE = CB*cos(C); CD = CA*cos(C);
поэтому эти треугольники подобны, и AB = ED/cos(C);
Поскольку ∠HEC = ∠HDC = 90°; то окружность, построенная на CH, как на диаметре, пройдет через точки D и E.
Поэтому CH - диаметр окружности, описанной вокруг треугольника DEC, и по теореме синусов ED = CH*sin(C);
Отсюда sin(C) = 12/13; => cos(C) = 5/13;
AB = 60*13/5 = 156;
Можно получить такую "обратную теорему Пифагора"
(1/ED)^2 = (1/AB)^2 + (1/CH)^2; :)
это соотношение решает задачку в общем виде, если в условии не скрыта Пифагорова тройка (как тут - 5,12,13)
Свойство --- это характеристика известного объекта
(например, если дан ромб, то из этого следует,
что его диагонали взаимно перпендикулярны)))
а признак --- это характеристика неизвестного объекта, т.е.
необходимо определить что это за объект (по признакам)))
т.е. если сказано, что диагонали 4-угольника взаимно перпендикулярны,
то из этого не следует, что это ромб (это НЕ признак)))
если стороны 4-угольника равны, то точно ничего утверждать нельзя
--- может быть это ромб, а может быть это квадрат --- это НЕ признак))
а вот если известно, что это квадрат,
то точно у него стороны равны (это свойство)))
если известно, что это ромб,
то точно у него стороны равны (это свойство)))
если диагонали 4-угольника точкой пересечения делятся пополам,
то это точно параллелограмм (это ПРИЗНАК)))
это может быть и прямоугольник, это может быть и ромб
(они же все являются параллелограммами)))
дан треугольник (какой-то, не известно какой),
но про него известно, что две стороны у него равны (это ПРИЗНАК)
---вывод: это точно равнобедренный треугольник
дан равнобедренный треугольник (известно какой)
---вывод: у него две стороны точно равны (это СВОЙСТВО)
У треугольников ABC и DEC стороны общего угла пропорциональны.
CE = CB*cos(C); CD = CA*cos(C);
поэтому эти треугольники подобны, и AB = ED/cos(C);
Поскольку ∠HEC = ∠HDC = 90°; то окружность, построенная на CH, как на диаметре, пройдет через точки D и E.
Поэтому CH - диаметр окружности, описанной вокруг треугольника DEC, и по теореме синусов ED = CH*sin(C);
Отсюда sin(C) = 12/13; => cos(C) = 5/13;
AB = 60*13/5 = 156;
Можно получить такую "обратную теорему Пифагора"
(1/ED)^2 = (1/AB)^2 + (1/CH)^2; :)
это соотношение решает задачку в общем виде, если в условии не скрыта Пифагорова тройка (как тут - 5,12,13)